光学 精密工程, 2018, 26 (6): 1287, 网络出版: 2018-10-02  

分体式超大口径空间遥感器技术及其发展

Technology and development of deployable segmented ultra-large-aperture space remote sensors
作者单位
1 中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院大学, 北京 100049
摘要
针对天文观测和**建设对超大口径空间遥感器的迫切需求, 对分体式超大口径空间遥感器技术进行了系统研究。首先阐述了该技术的主要实现方式和基本原理, 主要包括分体自重组系统, 分体空间装调系统和分体空间制造系统, 概述了不同实现方式的发展历史和研究现状; 总结了各种实现方式的结构特点和核心技术, 并对其发展前景进行了分析和展望。最后, 根据我国未来空间探测的实际需求, 结合现阶段技术水平和未来的技术潜力, 给出了重点发展分体自重组技术, 积累完善分体空间装调技术, 布局分体空间制造技术的建议。
Abstract
In view of the urgent need of astronomical observation and national defense construction for the ultra-large-aperture space remote sensors, this study systematically researches the technology of deployable segmented ultra-large-aperture space remote sensors. Three kinds of technological routes are presented, including an automatic-deployment segmented system, in-space assembly segmented system and in-space manufacture system, and the basic principle is introduced. Then, the development history and research process are described, the core technology and structure characteristics are summarized, and the development prospects are analyzed. Finally, according to the actual requirements of our future space exploration, some suggestions, including focusing on the development of the technology of the automatic-deployable segmented system, accumulating the technology of the in-space assembly segmented system, programming the technology of the in-space manufacture system strategically, are provided based on the current technical conditions and development trends.
参考文献

[1] RIOUX N, THRONSON H, FEINBERG L, et al。. A future large-aperture UVOIR space observatory: reference designs [J]. SPIE, 2015, 9602: 960205-1

[2] REDDING D C, FEINBERG L, POSTMANC M, et al.. Beyond JWST: Performance requirements for a future large UVOIR space telescope [J]. SPIE, 2014, 9143: 914312-1.

[3] LILLIE C F. Large Deployable Telescopes for Future Space Observatories [J]. SPIE, 2005, 58990D-1.

[4] PHILIP STAHL H, THRONSON H, LANGHOFF S, et al.. Potential astrophysics science missions enabled by NASA's planned Ares V [J]. SPIE, 2009, 7436: 743607-1.

[5] 马志滨, 何麟书. 国外重型运载火箭发展趋势述评 [J]. 固体火箭技术, 2012, 35(1): 1-4.

    MA ZH B, HE L SH. Development trend review of 2624 Optics and Precision Engineering Vol. 24 foreign heavy-lift launch vehicle [J]. Journal of Solid Rocket Technology, 2012,35 (1): 1-4. (in Chinese)

[6] 张学军, 樊延超, 鲍赫, 等. 超大口径空间光学遥感器的应用和发展 [J]. 光学 精密工程, 2016, 24(11): 2613-2626.

    ZHANG X J, FAN Y CH, BAO H, et al.. Applications and development of ultra large aperture space optical remote sensors[J]. Opt. Precision Eng., 2016, 24(11):2613-2626. (in Chinese)

[7] 廖周. 大口径分块望远镜主镜误差分析与共相位探测方法研究[D]. 成都: 电子科技大学, 2015

    LIAO ZH. Error analysis of segmented primary mirror and research on co-phasing measurement [D]. Chengdu: University of Electronic Science and Technology of China, 2015.(in Chinese)

[8] 王金.反射镜共相位拼接检测与驱动控制技术研究[D]. 北京: 中国科学院, 2014.

    WANG J. Research on the Test Techniques and Drive Control of the Segmented Mirror [D]. Deijing: University of Chinese Academy of Sciences, 2014.(in Chinese)

[9] 姚劲刚. 合成孔径望远镜共相位拼接技术研究[D]. 北京: 中国科学院, 2017.

    YAO J G. The study of Co-phasing Alignment Technology For Segmented Telescope [D]. Deijing: University of Chinese Academy of Sciences,2017.(in Chinese)

[10] 曹睿, 赵智亮, 郑列华, 等. 合成口径子镜测试拼接技术[J]. 激光与光电子学进展, 2015, 52(1): 051201.

    CAO R, ZHAO ZH L, ZHENG L H, et al.. Subaperture Cophasing Technique of Segmented Mirror[J]. Laser & Optoelectronics Progress, 2015, 52(1): 051201. (in Chinese)

[11] 陈小伟. 空间光学遥感器大口径主镜展开技术研究[D]. 北京: 中国科学院, 2011.

    CHEN X W. Technology Studying on the Deployable Large-aperture Primary Mirror of Space Optical Remote Sensor[D]. Deijing: University of Chinese Academy of Sciences,2011.(in Chinese)

[12] PITTMAN R, LEIDICH C, MASCY F, et al.. A modular approach to developing a large deployable reflector [EB/OL]. http://spiedigitallibrary.org/ss/termsofuse.aspx, 1984.

[13] BRUCE PITTMAN R. The large deployable reflector - a technology development challenge [J]. SPIE, 1984, 493: 106-113.

[14] CUNNINGHAM C, CULLUM M, DETSIS E, et al.. TECHBREAK: a technology foresight activity for the European Space Agency points the way to future space telescopes [J]. SPIE, 2015, 9602: 960204-1-25.

[15] GREENHOUSE M A. The JWST Science Instrument Payload: Mission Context and Status [J]. SPIE, 2014, 9143: 914307.

[16] PHILIP STAHL H, ALONGI C, ARNESON A, et al. Survey of interferometric techniques used to test JWST optical components [J]. SPIE, 2010, 7790: 779002.

[17] NELLA J, ATCHESON P, ATKINSON C, et al.. James Webb Space Telescope (JWST) Observatory Architecture and Performance [J]. SPIE, 2004, 5487: 576-287.

[18] ><参考文献原文> WELLS C, WHITMAN T, HANNON J, et al.. Assembly integration and ambient testing of the James Webb Space Telescope primary mirror [J]. SPIE, 2004, 5487: 859-866.

    

    ATKINSON C, TEXTER S, HELLEKSON R, et al.. Status of the JWST Optical Telescope Element [J]. SPIE, 2006, 6265: 62650T.

[19] WELLS C, MALLETTE M, FISCHER D, et al.. Primary Mirror Segment Assembly integration and alignment for the James Webb Space Telescope [J]. SPIE, 2010, 7793: 779309.

[20] BAIOCCHI D, PHILIP STAHL H. Enabling future space telescopes: mirror technology review and development roadmap[R].Astro:the Astronomy & Astrophysics Decadal Survey,2009.

[21] HADAWAY J B, CHANEY D M, CAREY L B. The optical metrology system for cryogenic testing of the JWST primary mirror segments [J]. SPIE, 2011, 8126: 81260P.

[22] KENDRICK S E, BROWN R J, STREETMAN S, et al.. Lightweighted Beryllium Cryogenic Mirrors for Both Monolithic and Segmented Space Telescopes [J]. SPIE, 2003, 4850: 241-253.

[23] REED T, KENDRICK S E, BROWNA R J, et al.. Final results of the Subscale Beryllium Mirror Demonstrator (SBMD) program [J]. SPIE, 2001, 4451: 5-14.

[24] HADAWAY J B, GEARY J, REARDON P, et al.. Cryogenic optical testing results for the Subscale Beryllium Mirror Demonstrator (SBMD) [J]. SPIE, 2001, 4451: 15-26.

[25] KENDRICK S E, CHANEY D, BROWN R J, et al.. Optical characterization of the beryllium semi-rigid AMSD mirror assembly [J]. SPIE, 2003, 5180: 180-187.

[26] CHANEY D M, BROWN R J, KENDRICK S E, et al.. Results of the beryllium AMSD mirror cryogenic optical testing [J]. SPIE, 2004, 5487: 833-841.

[27] KENDRICK S E, REED T, STREETMAN S. In-process status of the 1.4-rn beryllium semi-rigid Advanced Mirror System Demonstrator (AMSD) [J]. SPIE, 2001, 4451: 58-66.

[28] KENDRICK S E, REED T, STREETMAN S, et al.. Design and test of semi-rigid beryllium mirrors for lightweighted space applications; SBMD cryogenic performance update and AMSD design approach [J]. SPIE, 2001, 4198: 221-229.

[29] STREETMAN S, KINGSBURY L. Cryogenic Nano-positioner Development and Test for Space Applications [J]. SPIE, 2003, 4850: 274-285.

[30] CHANEY D M, HADAWAY J B, LEWIS J. Cryogenic radius of curvature matching for the JWST primary mirror segments [J]. SPIE, 2009, 7439: 743916.

[31] PHILIP STAHL H. JWST mirror technology development results [J]. SPIE, 2007, 6671: 667102.

[32] FEINBERG L D, DEAN B, HYDE T, et al.. Large segmented UV-Optical space telescope using a Hybrid Sensor Active Control (HSAC) architecture [J]. SPIE, 2009, 7436: 743608-1.

[33] POSTMAN M, BROWN T, SEMBACH K, et al.. Advanced Technology Large-Aperture Space Telescope: science drivers and technology developments [J]. Optical Engineering, 2012, 51(1): 011007 -1-11.

[34] PHILIP STAHL H, POSTMAN M, SCOTT SM-ITH W. Engineering specification for large-aperture UVO space telescopes derived from Science requirements [J]. SPIE, 2013, 8860: 886006-1-13.

[35] BOLCAR M R, BAL-ASUBRAMANIAN K, CLAMPIN M, et al.. Technology development for the Advanced Technology Large Aperture Space Telescope (ATLAST) as a Candidate Large UVOptical-Infrared (LUVOIR) Surveyor [J]. SPIE, 9602: 960209-1-14.

[36] OEGERLE W R, FEINBERG L D, PURVES L R, et al.. ATLAST-9.2m: a large-aperture deployable space telescope [J]. SPIE, 2010, 7731: 77312M.

[37] POSTMAN M. Advanced Technology Large-Aperture Space Telescope (ATLAST): a technology roadmap for the next decade [EB/OL]. http://arxiv.org/abs/0904.0941, 2009.

[38] MARTIN F, LESYNA L, LEROY B, et al.. Lockheed Martin Team's Next Generation Space Telescope (NGST) reference architecture [J]. SPIE, 2000, 4013: 17-26.

[39] AMATO M J, BENFORD D J, HARVEY MOSELEY S, et al.. An engineering concept and enabling technologies for a large Single Aperture Far-Infrared Observatory (SAFIR) [J]. SPIE, 2003, 4850: 960205-1.

[40] LILLIE C F, DAILEY D R. A mission architecture for future space observatories optimized for SAFIR [J]. SPIE, 2005, 5899: 58990Q-1-7.

[41] REY J J, WIRTH A, JANKEVICS A, et al.. A deployable, annular, 30m telescope, space-based observatory [J]. SPIE, 2014, 9143: 914318.

[42] OEGERLE W R, PURVES L R, BUDINOFF R V, et al.. Concept for a Large Scalable Space Telescope: In-space assembly [J]. SPIE, 2006, 6265:62652C.

杨会生, 张学军, 李志来, 鲍赫, 樊延超. 分体式超大口径空间遥感器技术及其发展[J]. 光学 精密工程, 2018, 26(6): 1287. YANG Hui-sheng, ZHANG Xue-jun, LI Zhi-lai, BAO He, FAN Yan-chao. Technology and development of deployable segmented ultra-large-aperture space remote sensors[J]. Optics and Precision Engineering, 2018, 26(6): 1287.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!