作者单位
摘要
1 中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院大学, 北京 100049
针对天文观测和**建设对超大口径空间遥感器的迫切需求, 对分体式超大口径空间遥感器技术进行了系统研究。首先阐述了该技术的主要实现方式和基本原理, 主要包括分体自重组系统, 分体空间装调系统和分体空间制造系统, 概述了不同实现方式的发展历史和研究现状; 总结了各种实现方式的结构特点和核心技术, 并对其发展前景进行了分析和展望。最后, 根据我国未来空间探测的实际需求, 结合现阶段技术水平和未来的技术潜力, 给出了重点发展分体自重组技术, 积累完善分体空间装调技术, 布局分体空间制造技术的建议。
空间遥感器 超大口径 分体自重组系统 空间装调系统 空间制造系统 space remote sensor ultra-large aperture automatic-deployable segmented system in-space assembly system in-space manufacture system 
光学 精密工程
2018, 26(6): 1287
张钊 1,2,*李宪圣 1万志 1孙景旭 1[ ... ]任建岳 1
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院大学, 北京 100049
目前光学遥感器向着大口径、宽视场的趋势发展, 随着遥感器口径和视场的不断增大, 需要与之对应的定标设备来满足其全口径全视场的定标要求。为此, 研制了一套超大口径(3.2 m)均匀光源系统。首先基于积分球理论和黑体普朗克理论设计出口光谱辐射亮度, 并利用LightTools软件对出口均匀性和朗伯特性进行内置光源分布仿真设计。然后针对超大口径均匀光源辐射性能测试存在的问题, 研制了一套基于阵列探测器的辐射性能测试装置, 并应用校正算法进行一致性校正。最后利用新研制的设备对超大口径均匀光源进行测试实验, 并对测试不确定度进行分析。结果显示:0.8 m口径光源的光谱辐射亮度大于600 W·m-2·sr-1, 3.2 m口径光源的均匀性优于98.362%, 中心点±45°范围内朗伯特性优于98.810%, 数据表明新研制的超大口径均匀光源满足设计要求。
遥感 辐射定标 超大口径均匀光源 仿真设计 辐射性能测试 一致性校正 
中国激光
2017, 44(4): 0410003
作者单位
摘要
中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
针对空间遥感技术的迅速发展及其对空间探测精度需求的提高, 对研制更可行有效的超大口径空间光学遥感器的技术路线开展了研究。介绍了该领域已发射和计划发射的超大口径光学遥感器涉及的发展历史和结构特点, 以及它们的研究现状和应用领域, 主要包括整体式成像系统、分块可展开成像系统、光学干涉合成孔径成像系统和衍射成像系统等。分析对比了各种传感器的性能特点及现阶段的应用情况。最后, 考虑我国高分辨率、高成像质量空间光学遥感器的应用需求, 结合当前技术条件以及相关技术的发展趋势, 分别针对2~4 m大口径系统, 4~10 m超大口径系统和更大口径系统的成像需求提出了最佳解决方案。
超大口径空间遥感器 整体式成像系统 分块可展开成像系统 光学干涉合成孔径成像系统 衍射成像系统 综述 ultra large aperture space optical remote sensor monolithic aperture imaging system deployable segmented imaging system interferometric synthetic aperture imaging system diffractive imaging system review 
光学 精密工程
2016, 24(11): 2613
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院光学系统先进制造技术重点实验室, 吉林 长春 130033
3 中国科学院大学, 北京 100049
在超大口径光学制造中,镜体背部空间狭小,转台承载能力有限,要求光学制造的支撑结构尽量简单;镜体承受加工载荷且弥漫加工磨料,要求支撑系统对加工载荷和环境不敏感;此外,为便于在线检测,缩短检测周期,还要求支撑系统具有较高的调整精度和稳定性.设计了一种均力型静压支撑系统,先测试了单个支撑的均力性及刚度,预测了压印效应的大小;随后阐述了支撑系统的控制方法;最后实现了系统集成及其图形用户界面(GUI)界面操作.将该系统用于2m SiC 反射镜的光学加工,可将压印效应均方根(RMS)值控制到13.1 nm≈λ/48,满足加工需要;用于立式检测,系统对镜体倾斜和俯仰角可监测到的角度范围为0.34″~0.48°,以及沿Z 方向±5 mm 的运动;对应曲率中心在XY 平面的调节范围dR 最大值50 mm,最小值为10 μm,与电荷耦合器件(CCD)像元尺寸接近,满足立式检测需要.对目前具有重大需求的2~4 m 量级反射镜而言,该系统具有较好的适用性.
光学制造 均力静压支撑 调整精度 超大口径反射镜 在线加工检测 
光学学报
2015, 35(8): 0822001
作者单位
摘要
中国科学院 长春光学精密机械与物理研究所 小卫星技术国家地方联合工程研究中心,吉林 长春 130033
主反射镜的口径大小与结构形式在极大程度上决定了空间望远镜的技术难度与经济成本。为了实现更高的空间分辨率与更强的信息收集能力,各国研制的空间望远镜主反射镜的口径朝着越来越大的趋势发展,从“哈勃空间望远镜”(HST)的24 m,到“新世界观测者空间望远镜”(NWO)的4 m,甚至到“先进技术大口径空间望远镜”(ATLAST)的8 m,无不体现了对超大口径空间观测能力的追求。而单块式主镜凭借其支撑技术的可靠性与经济性,正成为超大口径空间望远镜的首选。通过对国外研制的超大口径空间望远镜的论述与分析,探讨了目前空间望远镜中超大口径主反射镜的关键技术与发展方向。针对目前国内运载能力与光学制造加工能力的极限,提出了建造基于35 m口径主镜的空间望远镜设想。
空间望远镜 主反射镜 超大口径 单块 反射镜支撑 space telescope primary mirror ultra large aperture monolithic mirror support 
中国光学
2014, 7(4): 532
胡海飞 1,*罗霄 1,2辛宏伟 1戚二辉 1,3[ ... ]张学军 1,2
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院光学系统先进制造技术重点实验室, 吉林 长春 130033
3 中国科学院大学, 北京 100049
为降低支撑控制难度和节约制造成本,同时又保证在线光学加工检测所需的支撑精度,提出超大口径反射镜的支撑布局优化方法。研究支撑状态下的反射镜面形精度,解决面形拟合和优化目标提取的问题;以斜率均方根(SlopeRMS)为目标建立非圆形口径的超薄反射镜加工支点布局优化模型,使其具备自适应有限元分析的功能;针对工程中大量使用的轻量化反射镜,设计出适应其几何变化的支撑转换结构,并展开以面形均方根(RMS)误差为目标的支点位置的优化设计;通过30 m口径望远镜(TMT)第三镜和某2 m口径反射镜的支撑布局优化,验证了所采用方法的效果。算例结果表明,所提方法具有较好的几何适应性,布局优化后支撑系统的精度满足超大口径反射镜的光学制造要求。
光学制造 均力支撑 支撑布局优化 超大口径反射镜 面形精度 光机集成 
光学学报
2014, 34(4): 0422003

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!