作者单位
摘要
1 中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院 光学系统先进制造技术重点实验室, 吉林 长春 130033
为了实现磁流变抛光的确定性加工, 对磁流变抛光去除函数的原点位置进行了标定。分析了磁流变抛光去除函数的产生过程及其去除率分布。利用标准圆柱, 建立了抛光轮最低点与数控加工中心测头的相对位置坐标变换关系, 实现了光学元件在机床坐标系中的精确对准。通过在光学元件的特征点上进行去除函数实验测试, 实现了抛光轮最低点对应的去除函数原点位置标定, 对标定误差进行了分析。选择圆形平面光学元件, 应用以金刚石颗粒为抛光粉的水基磁流液, 对抛光轮直径为360 mm的磁流变抛光系统进行去除函数原点标定, 单次标定精度达到0.030 mm。实验结果表明: 本文提出的去除函数原点标定方法简单可靠, 能够满足磁流变抛光技术的修形需求, 可为磁流变抛光在光学制造中的应用提供有力支持。
光学制造 磁流变抛光 去除函数 原点标定 optical fabrication Magnetorheological Finishing(MRF) removal function coordinate-origin calibration 
光学 精密工程
2017, 25(1): 8
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所光学系统先进制造技术重点实验室, 吉林 长春130033
2 中国科学院大学, 北京 100049
计算全息图(CGH)在非球面、自由曲面等光学元件的高精度检测中发挥着重要作用。激光直写机床导轨的正交性误差会影响CGH 图案的绘制精度,进而在面形检测结果中引入像散误差。为定量研究激光直写机床导轨正交误差对CGH检测结果的影响,利用标量衍射理论,建立激光直写机床导轨角度误差模型,以CGH对准区域图案为例对机床导轨正交性误差的影响进行分析。实验结果表明在机床导轨正交性误差为800 μrad时的均方根(RMS)值、峰谷值(PV)值和Zernike像散系数与理论值分别相差2.26%、2.33%、1.72%,从而验证所建立误差模型的正确性。
测量 计算全息图 激光直写 标量衍射理论 对准区域 正交性误差 
光学学报
2016, 36(10): 1012005
作者单位
摘要
中国科学院长春光学精密机械与物理研究所 中国科学院光学系统先进制造技术重点实验室, 长春130033
将光学系统波像差检验技术与子孔径拼接测试技术相融合提出了凸非球面系统拼接检测方法, 对该方法的原理和实现步骤进行了分析和研究, 并建立了合理的子孔径拼接数学模型.依次利用计算机控制光学表面成形技术和磁流变抛光技术对一包含大口径凸非球面的离轴三反光学系统的各反射镜进行加工, 并对整个系统进行装调和测试.测定光学系统各视场的波像差分布, 通过综合优化子孔径拼接算法和全口径面形数据插值求解得到大口径凸非球面全口径的面形信息.结合工程实例, 对一口径为292 mm×183 mm的离轴非球面次镜进行了系统拼接测试和加工, 其最终面形分布的均方根值为0.017λ(λ=632.8 nm).
光学加工 光学检测 凸非球面 计算机控制光学表面成形 磁流变抛光 子孔径拼接 Optical fabrication Optical testing Convex asphere Computer Controlled Optical Surfacing(CCOS) Magneto Rheological Finishing (MRF) Subaperture Stitching Interferometry (SSI) 
光子学报
2016, 45(7): 070722001
戚二辉 1,2,*罗霄 2,3李明 1,2郑立功 2,3张学军 2,3
作者单位
摘要
1 中国科学院大学,北京 100049
2 中国科学院长春光学精密机械与物理研究所,吉林 长春 130033
3 中国科学院光学系统先进制造技术重点实验室,吉林 长春 130033
:五棱镜扫描检测具有结构简单、检测周期短等优点,可以实现大口径平面镜低阶像差的高精度检测,是指导大口径平面镜光学加工过程的一种有效途径。为使大口径平面镜检测系统中的五棱镜扫描技术更加完善,通过理论分析和计算模拟,对五棱镜检测系统中的主要误差源,包括五棱镜制造误差、温度梯度的影响、元件位置误差、光束定位误差、自准直仪测量误差等进行研究,形成了比较完善的误差分析的数理结果。计算结果表明,在当前实验室技术条件下,五棱镜扫描检测系统在单个测量点处的测量不确定度达到230 nrad,其中影响五棱镜检测系统测量精度的主要因素为自准直仪的测量精度与温度的影响。研究结果给出了工程实际中提高五棱镜扫描系统检测精度与减小测量误差的注意事项,并可用于指导系统设计时的误差分析及精度分配。
测量 光学检测 五棱镜扫描系统 光线矢量追迹 误差分析 testing optical testing pentaprism scanning system vectorial ray tracing error analysis 
红外与激光工程
2015, 44(2): 0639
熊玲 1,2,*罗霄 1刘振宇 1郑立功 1[ ... ]张学军 1
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所, 中国科学院光学系统先进制造技术重点实验室, 吉林 长春 130033
2 中国科学院大学, 北京 100049
提出采用摆臂式轮廓检测的方法,实现超大口径SiC反射镜面形的高精度轮廓检测。阐述了采用摆臂轮廓仪检测超大口径反射镜的基本原理和具体实施流程;介绍了基于扫描线交点高度一致性的特点进行面形重构的算法,以及针对离焦量测量不准的问题,采用激光跟踪仪对面形离焦量进行辅助测量的手段,建立了综合优化的检测模型;结合实例对口径为2040 mm 的同轴抛物面SiC反射镜进行了摆臂轮廓检测,检测精度均方根(RMS)为0.46 μm,与干涉仪检测结果对比偏差0.03 μm。该技术与加工机床集成实现了反射镜的在位检测,以非球面的最接近球面为测量基准,提供了一种精确、高效地测量超大口径光学非球面面形的方法,满足了大口径SiC反射镜在研磨阶段的高精度轮廓检测需求。
测量 摆臂轮廓检测 大口径非球面 最接近球面 
光学学报
2015, 35(12): 1212002
作者单位
摘要
1 中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033
2 中国科学院大学, 北京100049
以永磁型磁流变抛光机为基础,提出了在光栅式加工轨迹下结合四轴联动机床(不含抛光轮转动轴)和变去除函数实现磁流变抛光技术确定性加工曲面的方法。讨论了曲面上光栅式加工轨迹等面积规划原则和基于矩阵乘积运算的驻留时间求解算法。分析了磁流变四轴联动机床的机械补偿方式,同时以变去除函数模型为基础从算法上实现了机械的剩余补偿。应用以氧化铈为抛光粉的水基磁流液对口径为80 mm、曲率半径为800 mm的BK7材料凸球面进行了修形验证实验,一次加工(5.5 min)后显示: 面形误差分布峰谷值 (PV) 和均方根值(RMS) 从117.47 nm和22.78 nm分别收敛到60.80 nm和6.28 nm。实验结果表明: 结合四轴联动的低自由度机床和变去除函数算法补偿的磁流变加工工艺能够有效地实现球面及低陡度非球面等曲面的高效确定性加工,为磁流变抛光在光学制造中的应用提供了有力的支持。
光学制造 磁流变抛光 四轴联动 曲面加工 变去除函数 光栅式轨迹 optical fabrication magnetorheological finishing 4-axis machine curve surface machining variable removal function raster path 
光学 精密工程
2015, 23(10): 2819
作者单位
摘要
1 中国科学院 长春光学精密机械与物理研究所中国科学院光学系统先进制造技术重点实验室,吉林 长春 130033
2 中国科学院大学,北京 100049
研究了空间遥感器用大口径SiC离轴非球面的超声复合磨削加工工艺。分别对磨削原理、金刚石砂轮结合剂选择、机床选取、磨削参数设定等进行了分析,并设计和规划了磨削工艺流程。基于逆向工程原理建立了高精度离轴非球面模型,创立了激光跟踪仪精磨阶段在线测量大口径离轴非球面的工艺。结合工程实践对一口径为700 mm×700 mm的SiC高次离轴非球面元件进行了逆向工程建模和超声磨削加工试验,并利用激光跟踪仪进行了在线检测。经过3个周期(每个周期4 h)的修磨,其面形精度PV值和RMS值分别由45.986 μm和7.949 μm收敛至12.181 μm和2.131 μm;与三坐标测试结果进行对比,其PV值和RMS值的偏差分别为0.892 3 μm和0.312 8 μm。实验显示,提出的磨削工艺实现了大口径SiC离轴非球面的快速精确磨削,其加工精度、效率以及表面质量都有了很大的提高。
光学制造 SiC离轴非球面 快速磨削 超声复合磨削 在线检测 optical fabrication SiC off-axis asphere fast grind ultrasonic grinding online testing 
光学 精密工程
2015, 23(9): 2497
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所光学系统先进制造技术重点实验室, 吉林 长春 130033
2 中国科学院大学, 北京 100049
大口径凸非球面镜在现代光学系统的应用日渐广泛,尤其在离轴三反光学系统中,它往往作为次镜使用。出于力学特性和热学特性考虑,一般采用不透明的SiC材料来制作此类非球面镜面,而且对于离轴系统,次镜的全口径均参与成像。口径大、加工材料不透明且无中心遮拦,使得传统的检测方法已经无法实现对此类非球面的检测。为解决此问题,提出一种计算机再现全息(CGH)与辅助球面镜混合补偿的凸非球面检测方法,构建了基于CGH辅助功能区域的检测对准方案,并以此方法对一口径为φ120 mm的SiC凸非球面反射镜进行了混合补偿检测,其检测结果与子孔径拼接检测结果在均方根(RMS)值为1/50 λ精度下一致,验证了该方法的可行性与正确性。
光学制造 混合补偿检测 凸非球面 计算机再现全息 辅助球面镜 零位补偿检测 
光学学报
2015, 35(11): 1122001
作者单位
摘要
1 中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院大学, 北京 100049
研究了三轴离子束系统抛光大口径高陡度离轴非球面过程中镜面曲率变化对离子束抛光去除函数的影响。提出了利用修正矩阵修正各驻留点处的去除函数信息, 进而实现对高陡度离轴非球面高精度抛光的方法。该方法通过对离轴非球面进行坐标转换来降低陡度变化对去除函数的影响; 基于Sigmund溅射理论分析离子束抛光非球面材料的去除率, 建立离子束抛光非球面去除函数模型, 计算了材料去除率在非球面各驻留点处的变化。最后, 根据投影原理计算在各驻留点处去除函数的半宽, 得到以驻留点矩阵为基础的去除函数修正矩阵, 从而掌握每一个驻留点处的去除函数信息, 然后根据计算机控制光学表面成形(CCOS)原理解得加工驻留时间分布。选取口径为900 mm×680 mm, 离轴量为350 mm 的离轴体育场型非球面镜进行了抛光实验, 实验显示抛光后非球面镜面形精度的RMS值由32.041 nm达到11.566 nm, 收敛率达 2.77, 对实际加工具有指导意义。
光学制造 离轴非球面 离子束抛光 溅射效应 去除函数 optical fabrication off-axis asphere surface ion beam figuring sputtering theory removal function 
光学 精密工程
2015, 23(6): 1572
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院光学系统先进制造技术重点实验室, 吉林 长春 130033
3 中国科学院大学, 北京 100049
在超大口径光学制造中,镜体背部空间狭小,转台承载能力有限,要求光学制造的支撑结构尽量简单;镜体承受加工载荷且弥漫加工磨料,要求支撑系统对加工载荷和环境不敏感;此外,为便于在线检测,缩短检测周期,还要求支撑系统具有较高的调整精度和稳定性.设计了一种均力型静压支撑系统,先测试了单个支撑的均力性及刚度,预测了压印效应的大小;随后阐述了支撑系统的控制方法;最后实现了系统集成及其图形用户界面(GUI)界面操作.将该系统用于2m SiC 反射镜的光学加工,可将压印效应均方根(RMS)值控制到13.1 nm≈λ/48,满足加工需要;用于立式检测,系统对镜体倾斜和俯仰角可监测到的角度范围为0.34″~0.48°,以及沿Z 方向±5 mm 的运动;对应曲率中心在XY 平面的调节范围dR 最大值50 mm,最小值为10 μm,与电荷耦合器件(CCD)像元尺寸接近,满足立式检测需要.对目前具有重大需求的2~4 m 量级反射镜而言,该系统具有较好的适用性.
光学制造 均力静压支撑 调整精度 超大口径反射镜 在线加工检测 
光学学报
2015, 35(8): 0822001

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!