作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所,吉林 长春 130033
2 中国科学院大学,北京 100049
3 哈尔滨新光光电科技股份有限公司,黑龙江 哈尔滨 150028
4 长春理工大学 光电工程学院,吉林 长春 130022
光学元件常用脆性材料作为原材料,脆性材料加工过程中极易引入亚表面缺陷,亚表面缺陷对脆性材料的制造阶段和应用阶段均存在严重的危害。制造方面,亚表面缺陷影响工序的选择与衔接,易产生过加工、欠加工等问题,导致加工效率低下;应用方面,亚表面缺陷影响光学元件的成像质量、稳定性、使用寿命等关键技术参数。为了高效率、高质量地去除亚表面缺陷,全面表征和准确检测光学元件的亚表面缺陷至关重要。文中首先介绍了不同加工方式对应的亚表面缺陷形成机理与亚表面缺陷的表征方法研究现状;其次归纳总结了破坏性与非破坏性的亚表面缺陷检测方法,分别介绍了不同检测方法的原理、适用材料与加工阶段、优点与不足之处;并介绍了基于表面粗糙度、加工参数的亚表面缺陷预测方法;最后,对亚表面缺陷检测技术的发展趋势进行了展望。
光学元件 亚表面缺陷 缺陷形成机理 亚表面缺陷表征 破坏性检测方法 非破坏性检测方法 optical components subsurface damage damage formation mechanism subsurface damage characterization destructive testing methods non-destructive testing methods 
红外与激光工程
2022, 51(12): 20220572
作者单位
摘要
中国科学院长春光学精密机械与物理研究所 中国科学院光学系统先进制造技术重点实验室,吉林 长春 130033
在简要总结了各种检测大口径反射镜难点的基础上,为了实现30 m望远镜(TMT)超大口径第三反射镜的高精度检测,提出了一种融合五棱镜扫描技术和子孔径拼接测试技术的新方法。大口径反射镜分阶段依次进行了五棱镜扫描测试和子孔径拼接检测,对该技术的基本原理和基础理论进行了分析和研究,制定了检测30 m望远镜第三反射镜(口径为3.5 m×2.5 m)的方案,对其测试流程、五棱镜设计、五棱镜扫描像差拟合、拼接最优化算法等进行了详细分析,并对30 m望远镜第三反射镜的原理镜进行了实验验证,其最终拼接检测面形的均方根值(RMS)和斜率均方根值(slopeRMS)分别为28.676 nm和0.97 μrad。
光学检测 超大口径平面反射镜 30 m望远镜 子孔径拼接干涉检测 五棱镜扫描 optical testing super-large plane mirror TMT SSI pentaprism scan 
红外与激光工程
2022, 51(1): 20210953
Author Affiliations
Abstract
Key Laboratory of Optical System Advanced Manufacturing Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
We implemented a stitching swing arm profilometer (SSAP) test for the inner and outer regions of a large aspheric surface with a short arm. The SSAP was more capable of improving sampling density of surface and was less sensitive to system error, like vibration noise and air-table noise. Firstly, a calculation model was built to evaluate the sampling density of the SSAP test. Then, sensitivity to system noise was tested when different lengths of arm were used. At the end, an experiment on a 3 m diameter aspheric mirror was implemented, where test efficiency was promoted, and high sampling density was achieved.
220.1250 Aspherics 220.4840 Testing 120.3940 Metrology 120.4640 Optical instruments 
Chinese Optics Letters
2019, 17(11): 112201
熊玲 1,2罗霄 1戚二辉 1张峰 1[ ... ]张学军 1
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所 中国科学院光学先进制造技术重点实验室, 吉林 长春 130033
2 中国科学院大学, 北京100049
为了确定摆臂式轮廓检测大口径离轴非球面采用不同扫描线数时系统检测误差的敏感性, 文中提出采用蒙特卡洛方法, 建立了仿真分析的模型。对母线条数分别为8~120条的模式进行模拟检测, 对系统噪声引入的面形误差进行Zernike多项式项拟合, 统计分析得母线条数为8~39条时, 系统噪声引入的低阶项检测误差随母线条数的增加而迅速降低; 母线条数为40~70条时, 引入低阶项检测误差降低缓慢; 71~120条时, 引入的低阶项检测误差几乎保持不变。结合实例, 对一口径1 500 mm的离轴非球面反射镜进行实验, 分别采用36条、72条和96条母线进行面形检测。36条母线检测误差相对较大, 检测结果为7.73 μm PV和0.68 μm RMS;72条母线和96条母线检测结果十分接近, 分别为5.755 μm PV, 0.568 μm RMS和 5.612 μm PV, 0.569 μm RMS。验证了仿真分析结果的准确性, 为摆臂式轮廓检测大口径离轴非球面中母线条数的优化选择提供了理论指导。
大口径 离轴非球面 摆臂式轮廓检测 仿真分析 large aperture off-axis aspherics SAP test simulation analysis 
红外与激光工程
2018, 47(2): 0217003
戚二辉 1,2,*罗霄 2,3李明 1,2郑立功 2,3张学军 2,3
作者单位
摘要
1 中国科学院大学,北京 100049
2 中国科学院长春光学精密机械与物理研究所,吉林 长春 130033
3 中国科学院光学系统先进制造技术重点实验室,吉林 长春 130033
:五棱镜扫描检测具有结构简单、检测周期短等优点,可以实现大口径平面镜低阶像差的高精度检测,是指导大口径平面镜光学加工过程的一种有效途径。为使大口径平面镜检测系统中的五棱镜扫描技术更加完善,通过理论分析和计算模拟,对五棱镜检测系统中的主要误差源,包括五棱镜制造误差、温度梯度的影响、元件位置误差、光束定位误差、自准直仪测量误差等进行研究,形成了比较完善的误差分析的数理结果。计算结果表明,在当前实验室技术条件下,五棱镜扫描检测系统在单个测量点处的测量不确定度达到230 nrad,其中影响五棱镜检测系统测量精度的主要因素为自准直仪的测量精度与温度的影响。研究结果给出了工程实际中提高五棱镜扫描系统检测精度与减小测量误差的注意事项,并可用于指导系统设计时的误差分析及精度分配。
测量 光学检测 五棱镜扫描系统 光线矢量追迹 误差分析 testing optical testing pentaprism scanning system vectorial ray tracing error analysis 
红外与激光工程
2015, 44(2): 0639
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院光学系统先进制造技术重点实验室, 吉林 长春 130033
3 中国科学院大学, 北京 100049
在超大口径光学制造中,镜体背部空间狭小,转台承载能力有限,要求光学制造的支撑结构尽量简单;镜体承受加工载荷且弥漫加工磨料,要求支撑系统对加工载荷和环境不敏感;此外,为便于在线检测,缩短检测周期,还要求支撑系统具有较高的调整精度和稳定性.设计了一种均力型静压支撑系统,先测试了单个支撑的均力性及刚度,预测了压印效应的大小;随后阐述了支撑系统的控制方法;最后实现了系统集成及其图形用户界面(GUI)界面操作.将该系统用于2m SiC 反射镜的光学加工,可将压印效应均方根(RMS)值控制到13.1 nm≈λ/48,满足加工需要;用于立式检测,系统对镜体倾斜和俯仰角可监测到的角度范围为0.34″~0.48°,以及沿Z 方向±5 mm 的运动;对应曲率中心在XY 平面的调节范围dR 最大值50 mm,最小值为10 μm,与电荷耦合器件(CCD)像元尺寸接近,满足立式检测需要.对目前具有重大需求的2~4 m 量级反射镜而言,该系统具有较好的适用性.
光学制造 均力静压支撑 调整精度 超大口径反射镜 在线加工检测 
光学学报
2015, 35(8): 0822001
戚二辉 1,2,*罗霄 2,3刘泉 1,2郑立功 2,3张学军 2,3
作者单位
摘要
1 中国科学院大学, 北京 100049
2 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
3 中国科学院光学系统先进制造技术重点实验室, 吉林 长春 130033
五棱镜扫描检测具有结构简单、检测周期短等优点,可实现低阶像差的高精度检测,是指导大口径、超大口径平面镜光学加工的有效途径。基于光线矢量追迹理论,建立五棱镜扫描检测系统数学模型,并采用最小二乘法推导出系统测量精度与系统主要光学元件角度变化量之间的解析表达式。在此基础上,分析了系统测量精度对元件装调精度的灵敏度,给出了系统精确装调的实施方案,并进行了系统装调试验,探索出适合大口径平面镜检测的五棱镜扫描检测系统装调流程。实验结果表明,由装调过程引起的系统测量误差可控制在40 nrad 以内。通过理论分析和装调试验,验证了使用五棱镜扫描检测技术进行大口径平面检测的可行性。
光学设计 五棱镜 系统装调 光线矢量追迹 
激光与光电子学进展
2015, 52(6): 062202
胡海飞 1,*罗霄 1,2辛宏伟 1戚二辉 1,3[ ... ]张学军 1,2
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院光学系统先进制造技术重点实验室, 吉林 长春 130033
3 中国科学院大学, 北京 100049
为降低支撑控制难度和节约制造成本,同时又保证在线光学加工检测所需的支撑精度,提出超大口径反射镜的支撑布局优化方法。研究支撑状态下的反射镜面形精度,解决面形拟合和优化目标提取的问题;以斜率均方根(SlopeRMS)为目标建立非圆形口径的超薄反射镜加工支点布局优化模型,使其具备自适应有限元分析的功能;针对工程中大量使用的轻量化反射镜,设计出适应其几何变化的支撑转换结构,并展开以面形均方根(RMS)误差为目标的支点位置的优化设计;通过30 m口径望远镜(TMT)第三镜和某2 m口径反射镜的支撑布局优化,验证了所采用方法的效果。算例结果表明,所提方法具有较好的几何适应性,布局优化后支撑系统的精度满足超大口径反射镜的光学制造要求。
光学制造 均力支撑 支撑布局优化 超大口径反射镜 面形精度 光机集成 
光学学报
2014, 34(4): 0422003

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!