蔡梦雪 1,2,3,4王孝坤 1,2,3,4张志宇 1,2,3,4李凌众 1,2,3,4[ ... ]张学军 1,2,3,4
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所,吉林 长春 130033
2 中国科学院大学,北京 100049
3 应用光学国家重点实验室,吉林 长春 130033
4 中国科学院光学系统先进制造技术重点实验室,吉林 长春 130033
由于仪器传递函数(Instrument Transfer Function, ITF)能准确反映仪器在空间频率上的响应特征,被广泛应用于仪器规范之中。目前多采用刻有单一台阶特征或不同周期正弦特征的平面测试板对干涉仪的ITF进行检测。针对平面测试板无法完成高陡度球面/非球面镜检测时ITF标定的问题,提出了根据球面台阶测试板标定高陡度镜面检测的子孔径拼接ITF的方法。通过超精密车削技术制作了球面台阶测试板,并对其进行拼接检测,根据梯度定位法和旋转矩阵完成检测孔径中台阶的定位及采样,利用傅里叶变换方法实现对台阶实测面形的功率谱密度求解,最后与理想面形功率谱密度做比获得ITF。对口径100 mm、曲率半径100 mm、带有同心圆环台阶结构的球面台阶测试板进行拼接检测以及数据分析,实验结果表明:在1 mm−1的空间频率范围内,各个子孔径对高陡度镜面的检测水平平均可达到82.72%,具有较好的检测精度,随后ITF逐渐衰减,当空间频率在1.5 mm−1左右时,仅能达到40%~60%。
高陡度球面 高陡度非球面 仪器传递函数 子孔径拼接 球面台阶测试板 high-steep spherical surface high-steep aspheric surface instrument transfer function sub-aperture stitching spherical step test board 
红外与激光工程
2023, 52(9): 20230462
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所,吉林 长春 130033
2 中国科学院大学,北京 100049
3 哈尔滨新光光电科技股份有限公司,黑龙江 哈尔滨 150028
4 长春理工大学 光电工程学院,吉林 长春 130022
光学元件常用脆性材料作为原材料,脆性材料加工过程中极易引入亚表面缺陷,亚表面缺陷对脆性材料的制造阶段和应用阶段均存在严重的危害。制造方面,亚表面缺陷影响工序的选择与衔接,易产生过加工、欠加工等问题,导致加工效率低下;应用方面,亚表面缺陷影响光学元件的成像质量、稳定性、使用寿命等关键技术参数。为了高效率、高质量地去除亚表面缺陷,全面表征和准确检测光学元件的亚表面缺陷至关重要。文中首先介绍了不同加工方式对应的亚表面缺陷形成机理与亚表面缺陷的表征方法研究现状;其次归纳总结了破坏性与非破坏性的亚表面缺陷检测方法,分别介绍了不同检测方法的原理、适用材料与加工阶段、优点与不足之处;并介绍了基于表面粗糙度、加工参数的亚表面缺陷预测方法;最后,对亚表面缺陷检测技术的发展趋势进行了展望。
光学元件 亚表面缺陷 缺陷形成机理 亚表面缺陷表征 破坏性检测方法 非破坏性检测方法 optical components subsurface damage damage formation mechanism subsurface damage characterization destructive testing methods non-destructive testing methods 
红外与激光工程
2022, 51(12): 20220572
苏航 1,2王孝坤 1,2程强 1,2李凌众 1,2[ ... ]张学军 1,2
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所,吉林 长春 130033
2 中国科学院大学,北京 100049
为了实现大口径凸非球面的高精度检测,提出了将子孔径拼接检测法和计算全息补偿检测法相结合的检测方法。由于其中心的非球面度较小,采用球面波直接检测;而外圈的非球面度较大,采用子孔径拼接和计算全息混合补偿的方法进行测量,再通过拼接算法将中心检测数据和外圈检测数据进行拼接从而得到全口径面形。结合实例对一块口径为540 mm的大口径凸非球面进行测量,并将检测结果与Luphoscan 检测结果进行对比,两种方法检测面形残差的RMS值为0.019λ,自检验子孔径与拼接结果点对点相减后的RMS值为0.017λ。结果表明该方法能够实现大口径凸非球面的高精度检测。
光学检测 大口径凸非球面 混合补偿 子孔径拼接检测 计算全息 optical testing large convex asphere mixed compensation sub-aperture stitching testing computer generated hologram 
红外与激光工程
2022, 51(9): 20220576
作者单位
摘要
1 华中科技大学 光学与电子信息学院,湖北 武汉 430074
2 湖南工业大学 轨道交通学院,湖南 株洲 412007
3 中国科学院长春光学精密机械与物理研究所 中国科学院光学系统先进制造技术重点实验室,吉林 长春 130033
4 季华实验室 总装中心,广东 佛山 528200
5 长春理工大学 光电工程学院,吉林 长春 130022
目前,一些大口径光学望远镜主镜的曲率半径已经达到了几十米量级,若单纯利用计算全息实现对镜面进行面形检测,则检测光路长度不低于其曲率半径长度。受场地大小及环境气流扰动等因素的限制,该条件下难以实现对镜面的高精度测量。为了解决大口径长焦距光学镜面的高精度面形检测问题,提出了一种混合补偿干涉检测方法。该混合补偿方法结合了计算全息图和辅助透镜,在有效地缩短检测光路长度的前提下,可以实现对非球面镜面的零位补偿干涉测量。在光路设计中,需要有效地实现混合补偿光路光学设计参数优化以及对CGH衍射级次的分离;同时,检测光路长度应小于非球面反射镜曲率半径大小,以实现缩短检测光路长度的目的。通过对EELT主镜镜面进行仿真检测,结果表明:该方法检测光路长度可缩短至镜面曲率半径长度的1/8以内,设计检测精度优于RMS λ/100 (λ=632.8 nm)。上述仿真结果证明了该方法可以在缩短检测光路长度的情况下实现对待测非球面反射镜的高精度面形检测。
光学检测 干涉测量 混合补偿 计算全息 optical testing interferometry hybrid compensation computer generated hologram 
红外与激光工程
2022, 51(9): 20220384
作者单位
摘要
1 中国科学院 长春光学精密机械与物理研究所 中国科学院光学系统先进制造技术重点实验室,吉林长春30033
2 中国科学院大学,北京100049
为了实现离轴光学系统的高精度畸变分析、测量及在轨图像的快速、高精度畸变校正,利用高阶畸变分析方法对离轴光学系统的相对畸变进行了拟合分析。首先,对离轴光学系统的理论畸变进行了分析,提出了等效焦距的概念,并利用高阶畸变分析方法对系统的相对畸变进行了拟合分析;接着,针对装调完成的某离轴光学系统完成了畸变测试及焦距测量;最后,利用实测结果完成了该离轴光学系统的物像对应关系的高精度解算。与ZEMAX光线追迹的结果相比,利用高阶畸变系数计算得到的等效焦距最大偏差为0.366 mm;对于某装调完成的离轴光学系统,实测等效同轴系统焦距的偏差仅为6.378 mm,相对偏差为0.073%。验证了该方法对于离轴光学系统畸变分析、测量及焦距测量具有正确性及精度保证,将为在轨图像的快速、高精度畸变校正提供可靠输入。
离轴光学系统 畸变分析 焦距测量 等效焦距 高阶畸变系数 off-axis optical system distortion analysis focal length testing equivalent focal length high order distortion coefficient 
光学 精密工程
2022, 30(22): 2839
蔡志华 1,2王孝坤 1,2,*胡海翔 1,2,*程强 1,2[ ... ]张海东 1,2
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所,长春 130033
2 中国科学院大学,北京100049
单光楔补偿检测法具有良好的适用性、鲁棒性和灵活性,但是在检测光路中存在多种误差耦合,误差解耦困难,影响了单光楔补偿检测的精度和可信度。针对这一问题,本文提出一种计算全息法(Computer Generation Hologram, CGH)标定单光楔补偿检测光路系统误差的新方法。文中首先分析了单光楔补偿检测法系统误差的来源,并对CGH标定光楔补偿器的可行性进行了分析。结合工程实例,对口径为150 mm的单光楔补偿器设计了CGH,经分析可得CGH的标定精度为1.98 nm RMS,CGH标定后单光楔补偿检测精度为3.43 nm RMS,该精度能够满足大口径凸非球面反射镜的高精度检测要求。结果表明:CGH可以准确标定单光楔补偿器的位姿和检测光路的系统误差,解决了检测光路中误差解耦困难的问题,提高了单光楔补偿检测的准确性和可靠性。使用CGH标定得到Tap#2和Tap#3的检测光路系统误差分别为0.023λRMS和0.011λRMS。
计算全息 光学检测 衍射 光楔 computer generation hologram optical test diffraction optical wedge 
中国光学
2022, 15(1): 90
作者单位
摘要
中国科学院长春光学精密机械与物理研究所 中国科学院光学系统先进制造技术重点实验室,吉林 长春 130033
在简要总结了各种检测大口径反射镜难点的基础上,为了实现30 m望远镜(TMT)超大口径第三反射镜的高精度检测,提出了一种融合五棱镜扫描技术和子孔径拼接测试技术的新方法。大口径反射镜分阶段依次进行了五棱镜扫描测试和子孔径拼接检测,对该技术的基本原理和基础理论进行了分析和研究,制定了检测30 m望远镜第三反射镜(口径为3.5 m×2.5 m)的方案,对其测试流程、五棱镜设计、五棱镜扫描像差拟合、拼接最优化算法等进行了详细分析,并对30 m望远镜第三反射镜的原理镜进行了实验验证,其最终拼接检测面形的均方根值(RMS)和斜率均方根值(slopeRMS)分别为28.676 nm和0.97 μrad。
光学检测 超大口径平面反射镜 30 m望远镜 子孔径拼接干涉检测 五棱镜扫描 optical testing super-large plane mirror TMT SSI pentaprism scan 
红外与激光工程
2022, 51(1): 20210953
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所,吉林 长春 130033
2 中国科学院大学,北京 100049
随着单点金刚石车削技术和抛光技术的发展,实现了金属反射镜的快速高效低成本制造。然而,金属反射镜的检测手段存在明显不足,尤其是没有一种快速、高效的检测手段用于检测凸非球面金属反射镜。为提高凸非球面金属反射镜的检测效率,提出一种非零位拼接检测凸非球面金属反射镜的检测方法。结合工程实例,对口径为120 mm,顶点曲率半径R为1121.586 mm,二次曲线常数K为−2.38的凸非球面金属反射镜进行了拼接检测实验,拼接所得面形误差均方根值(RMS)为0.016λ(λ=632.8 nm)。与Luphoscan检测结果对比,验证了非零位拼接检测方法的检测精度RMS为0.007λ,结果表明该方法能够实现凸非球面金属反射镜的快速、高效检测。
拼接检测 凸非球面 非零位 金属反射镜 subaperture stitching convex aspheric surface non-null test metal mirror 
红外与激光工程
2021, 50(11): 20210061
王晶 1,2王孝坤 1,2胡海翔 1,2李凌众 1,2苏航 1,2
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所,吉林 长春 130033
2 中国科学院大学,北京 100049
随着先进光学系统设计与制造的发展,大口径光学系统得到了广泛的应用。然而,大口径平面镜高精度面形的检测手段不足,限制了大口径平面镜的制造与应用。为实现大口径平面反射镜的高精度面形检测,提出一种夏克哈特曼扫描拼接检测平面镜面形的方法。对扫描拼接原理、波前重构算法进行了研究,建立了微透镜阵列成像的数学模型,验证了夏克哈特曼扫描拼接检测原理的可行性。针对一口径为150 mm的平面镜进行了扫描拼接检测实验,拼接得到的全口径面形为0.019λRMS(λ=635 nm);与干涉检测结果对比,检测精度为0.008λRMS,结果表明该方法能够实现大口径平面反射镜的高精度检测。
光学检测 平面镜 面形误差 扫描拼接 夏克哈特曼 optical detection plane mirror surface-shape error scanning and stiching Shack-Hartmann 
红外与激光工程
2021, 50(10): 20210527
作者单位
摘要
1 华中科技大学 光学与电子信息学院,湖北 武汉 430074
2 广东省季华实验室,广东 佛山 528200
3 中国科学院长春光学精密机械与物理研究所,吉林 长春 130033
4 湖南工业大学 轨道交通学院,湖南 株洲 412007
为了解决大口径平面反射镜高精度检测问题,建立了一种基于全局优化的子孔径拼接检测数学模型,同时提出了一种拼接因子用于重叠区域取值。基于上述方法,结合工程实例,对一口径为120 mm的平面反射镜完成拼接检测,检测中共规划了四个待测子孔径,为了对比文中所述算法与传统最小二乘拟合拼接算法的拼接性能,分别利用两种算法完成了待测平面镜的面形重构。实验结果表明,两种算法所得拼接结果光滑、连续、无“拼痕”,同时分别将两种算法所得拼接结果与全口径检测结果进行了对比分析,从传统拼接算法残差图中可以看到明显的“拼痕”,而加权拼接方法得到的拼接结果光滑、连续,同时其残差图的PV与RMS值分别为0.012λ与0.002λ,小于传统算法残差图的PV与RMS值,验证了算法的可靠性与精度。
光学检测 干涉测量 子孔径拼接 拼接因子 optical testing interferometer subaperture stitching stitching factor 
红外与激光工程
2021, 50(10): 20210520

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!