中国激光, 2013, 40 (1): 0106002, 网络出版: 2012-12-12   

调整圆弓形散射元参数实现低群速和低色散的慢光效应

Slow Light Effect with Low Group Velocity and Low Dispersion by Adjusting Parameters of Cylinder-Segment Scatterers
作者单位
青岛大学物理科学学院, 山东 青岛 266071
摘要
圆弓形散射元具有各向异性和多个可控自由度的特点。采用平面波展开方法,通过长轴微调、短轴变化和散射元转动几个方面,优化了光子晶体线性缺陷波导结构,实现了高群折射率和低色散的慢光效应并进行了模拟。结果表明,通过调整长轴和短轴变化,可以获得带宽在10.1~1.1 nm,折射率为36.5~287.5的低色散慢光;通过散射元转动,可以获得带宽在11.4~0.8 nm、折射率为45.5~293.7的低色散慢光。上述方法还可以获得超低色散和接近零色散效果的慢光。由此表明,选择合适的散射元和调整散射元参数,可以有效地实现高群折射率和低色散的慢光效应。
Abstract
As cylinder-segment scatters have the features of anisotropy and multiple controllable degrees of freedom. With the plane-wave expansion method, the slow light effect with high group refractive index and low dispersion can be generated by optimizing the structures of photonic crystal waveguide with line defect, such as changing the length of major axis or minor axis, or rotating scatterers relative to the direction of line defect. Simulation results show that slow lights with band width from 10.1 nm to 1.1 nm and group refractive index from 36.5 to 287.5 are achieved by changing the lengths of major axis or minor axis; slow lights with band width from 11.4 nm to 0.8 nm and group refractive index from 45.5 to 293.7 are gained by rotating scatterers. Moreover, slow lights with ultralow dispersion, even near zero dispersion, can also be obtained by these methods, which shows that choosing suitable scatterers and adjusting their parameters can efficiently achieve slow light effect with high group refractive index and low dispersion.
参考文献

[1] Z. Shi, R. W. Boyd, D. J. Gauthier et al.. Enhancing the spectral sensitivity of interferometers using slowlight media[J]. Opt. Lett., 2007, 32(8): 915~917

[2] T. Baba. Slow light in photonic crystals[J]. Nat. Photon., 2008, 2: 465~473

[3] T. F. Krauss. Slow light in photonic crystal waveguides[J]. J. Phys. D, 2007, 40(9): 2666~2670

[4] S. Assefa, S. J. McNab, Y. A. Vlasov. Transmission of slow light through photonic crystal waveguide bends[J]. Opt. Lett., 2006, 31(6): 745~747

[5] R. J. P. Engelen, Y. Sugimoto, Y. Watanabe et al.. The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides [J]. Opt. Express, 2006, 14(4): 1658~1672

[6] A. Y. Petrov, M. Eich. Zero dispersion at small group velocities in photonic crystal waveguides[J]. Appl. Phys. Lett., 2004, 85(21): 4866~4868

[7] M. D. Settle, R. J. P. Engelen, M. Salib et al.. Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth[J]. Opt. Express, 2007, 15(1): 219~226

[8] A. D. Falco, L. O′Faolain, T. F. Krauss. Dispersion control and slow light in slotted photonic crystal waveguides[J]. Appl. Phys. Lett., 2008, 92(8): 083501

[9] B. Wang, M. A. Dündar, R. Ntzel et al.. Photonic crystal slot nanobeam slow light waveguides for refractive index sensing[J]. Appl. Phys. Lett., 2010, 97(15): 151105

[10] S. Kubo, D. Mori, T. Baba. Low-group-velocity and low-dispersion slow light in photonic crystal waveguides[J]. Opt. Lett., 2007, 32(20): 2981~2983

[11] L. H. Frandsen, A. V. Lavrinenko, J. F. Pefersen et al.. Photonic crystal waveguides with semi-slow light and tailored dispersion properties[J]. Opt. Express, 2006, 14(20): 9444~9450

[12] C. Li, H. Tian, C. Zheng et al.. Improved line defect structures for slow light transmission in photonic crystal waveguide[J]. Opt. Commun., 2007, 279(4): 214~218

[13] 张曼, 潘炜, 闫连山 等. 二维三角晶格介质柱光子晶体线缺陷波导慢光研究[J]. 中国激光, 2009, 36(4): 857~861

    Zhang Man, Pan Wei, Yan Lianshan et al.. Rsearch of slow light in the two-dimensional triangular rods photonic crystal line defected waveguide[J]. Chinese J. Lasers, 2009, 36(4): 857~861

[14] N. Ozaki, Y. Kitagawa, Y. Takata. High transmission recovery of slow light in a photonic crystal waveguide using a hetero groupvelocity waveguide[J]. Opt. Express, 2007, 15(13): 7974~7483

[15] T. P. White, L. C. Botten, C. M. Sterke et al.. Efficient slow-light coupling in a photonic crystal waveguide without transition region[J]. Opt. Lett., 2008, 33(22): 2644~2646

[16] 张伟, 王智勇, 王文超 等. 基于方形孔线缺陷的新型光子晶体零色散慢光结构研究[J]. 中国激光, 2011, 38(10): 1006006

    Zhang Wei, Wang Zhiyong, Wang Wenchao et al.. Investigation on a novel photonic crystal structure with dispersion-free slow light based on line-defect of quadrate air holes[J]. Chinese J. Lasers, 2011, 38(10): 1006006

[17] J. T. Li, T. P. White, L. O′Faolain et al.. Systematic design of flat band slow light in photonic crystal waveguides[J]. Opt. Express, 2008, 16(9): 6227~6232

[18] F. C. Leng, W. Y. Liang, B. Liu et al.. Wideband slow light and dispersion control in oblique lattice photonic crystal waveguides[J]. Opt. Express, 2010, 18(6): 5707~5712

[19] J. Wu, Y. P. Li, C. Peng et al.. Wideband and low dispersion slow light in slotted photonic crystal waveguide[J]. Opt. Commun., 2010, 283(14): 2815~2819

[20] M. E. Heidari, C. Grillet, C. Monat et al.. Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration[J]. Opt. Express, 2009, 17(3): 1628~1635

[21] Y. Hamachi, S. Kubo, T. Baba. Slow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal waveguide[J]. Opt. Lett., 2009, 34(7): 1072~1074

[22] J. Wu, Y. P. Li, C. Peng et al.. Numerical demonstration of slow light tuning in slotted photonic crystal waveguide using microfluidic infiltration[J]. Opt. Commun., 2011, 284(8): 2149~2152

[23] T. Baba, T. Kawasaki, H. Sasaki et al.. Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide[J]. Opt. Express, 2008, 16(12): 9245~9253

[24] S. C. Huang, M. Kato, E. Kuramochi et al.. Time-domain and spectral-domain investigation of inflection-point slow-light modes in photonic crystal coupled waveguide[J]. Opt. Express, 2007, 15(6): 3543~3549

[25] H. Tian, F. Long, W. Liu et al.. Tunable slow light and buffer capability in photonic crystal coupled-cavity waveguides based on electro-optic effect[J]. Opt. Commun., 2012, 285(10-11): 2760~2764

[26] 鲁辉, 田慧平, 李长红 等. 基于二维光子晶体耦合腔波导的新型慢光结构研究[J]. 物理学报, 2009, 58(3): 2049~2055

    Lu Hui, Tian Huiping, Li Changhong et al.. Research on new type of slow light structure based in 2D photonic crystal coupled cavit waveguide[J]. Acta Physia Sinica, 2009, 58(3): 2049~2055

[27] K. Tian, W. Arora, S. Takahashi et al.. Dynamic group velocity control in a mechanically tunable photonic-crystal coupled-resonator optical waveguide[J]. Phys. Rev. B, 2009, 80(13): 134305

[28] G. Manzacca, H. Habibian, K. Hinger et al.. Coupled cavity polaritons for switching and slow light applications[J]. Nanostructures, 2009, 7(1): 39~46

[29] 张栋, 赵建林, 吕淑媛. 低群速度色散和低损耗的二维光子晶体慢光波导[J]. 光学学报, 2011, 31(1): 0113001

    Zhang Dong, Zhao Jianlin, Lü Shuyuan. Slow light waveguide with low group-velocity dispersion and low loss in 2-D photonic crystal[J]. Acta Optica Sinica, 2011, 31(1): 0113001

[30] 曲连杰, 杨跃德, 黄永箴. 光子晶体波导慢光特性研究[J]. 光学学报, 2011, 31(1): 0113002

    Qu Lianjie, Yang Yuede, Huang Yongzhen. Slow-light characteristics of photonic crystal waveguides[J]. Acta Optica Sinica, 2011, 31(1): 0113002

[31] X. Chen, P. Shum, J. Hu. Special control of the cutoff frequencies in a 2D photonic crystal coupled-cavity waveguide[J]. Opt. Commun., 2007, 276(11): 93~96

[32] K. Ustün, H. Kurt. Ultra slow light achievement in photonic crystals by merging coupled cavities with waveguides[J]. Opt. Express, 2010, 18(20): 21155~21161

[33] S. Kocaman, X. Yang, J. F. McMillan et al.. Observations of temporal group delays in slow-light multiple coupled photonic crystal cavities[J]. Appl. Phys. Lett., 2010, 96(22): 221111

[34] V. S. C. Manga Rao, S. Hughes. Single quantum dots for slow and fast light in a planar photonic crystal[J]. Opt. Lett., 2007, 32(3): 304~307

[35] J. Hou, H. Wu, D. S. Citrin et al.. Wideband slow light in chirped slot photonic crystal coupled waveguides[J]. Opt. Express, 2010, 18(10): 10567~10580

[36] 万勇, 云茂金, 潘淑娣 等. 圆弓形散射元构建的二维硅基太赫兹波导的制备与表征[J]. 光学学报, 2011, 31(12): 1222004

    Wan Yong, Yun Maojin, Pan Shudi et al.. Fabrication and characterization of THz waveguides with silicon wafer by using cylinder segments as scatterers[J]. Acta Optica Sinica, 2011, 31(12): 1222004

[37] Y. Wan, Z. Cai, Q. Li et al.. Simulation and fabrication of THz waveguides with silicon wafer by using eye-shaped pillars as building blocks[J]. Appl. Phys. A, 2011, 102(2): 373~377

[38] A. Têtu, M. Kristensen, L. H. Frandsen et al.. Sigmund broadband topology-optimized photonic crystal components for both TE and TM polarizations[J]. Opt. Express, 2005, 13(21): 8606~8611

万勇, 付凯, 云茂金, 郭月, 夏临华. 调整圆弓形散射元参数实现低群速和低色散的慢光效应[J]. 中国激光, 2013, 40(1): 0106002. Wan Yong, Fu Kai, Yun Maojin, Guo Yue, Xia Linhua. Slow Light Effect with Low Group Velocity and Low Dispersion by Adjusting Parameters of Cylinder-Segment Scatterers[J]. Chinese Journal of Lasers, 2013, 40(1): 0106002.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!