Frontiers of Optoelectronics, 2010, 3 (2): 143, 网络出版: 2012-09-20  

Prospects and challenges of silicon/germanium on-chip optoelectronics

Prospects and challenges of silicon/germanium on-chip optoelectronics
作者单位
Institute of Semiconductor Engineering, University of Stuttgart, Stuttgart 70569, Germany
摘要
Abstract
On-chip optoelectronics allows the integration of optoelectronic functions with microelectronics. Recent advances in silicon substrate fabrication (silicon-oninsulator (SOI)) and in heterostructure engineering (SiGe/Si) push this field to compact (chipsize) waveguide systems with high-speed response (50-GHz subsystems realized, potential with above 100 GHz). In this paper, the application and requirements, the future solutions, the components and the physical effects are discussed. A very high refractive index contrast of the waveguide Si-core/SiO2-cladding is responsible for the submicron line widths and strong bendings realized in chipsize waveguide lines and passive devices. The SiGe/Si heterostructure shifts the accessible wavelength into infrared up to telecommunication wavelengths 1.30-1.55 μm. Germanium, although also an indirect semiconductor as silicon, offers direct optical transitions which are only 140 meV above the dominant indirect one. This is the basic property for realizing high-speed devices for future above 10 GHz on-chip clocks and, eventually, a laser source monolithically integrated on the Si substrate.
参考文献

[1] Morschbach M, Oehme M, Kasper E. Visible light emission by a reverse-biased integrated silicon diode. IEEE Transactions on Electron Devices, 2007, 54(5): 1091-1094

[2] Splett A, Schüppert B, Petermann K, Kasper E, Kibbel H, Herzog H J. Waveguide pin photodetector combination in SiGe. In: Proceedings of OFC/IOOC Technical Digest Series. 1993, 4: 116-117

[3] Taillaert D, Bogaerts W, Bienstman P, Krauss T F, Van Daele P, Moerman I, Verstuyft S, De Mesel K, Baets R. An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers. IEEE Journal of Quantum Electronics, 2002, 38(7): 949-955

[4] Bogaerts W, Dumon P, Brouckaert J, De Vos K, Taillaert D, Van Thourhout D, Baets R. Ultra-compact optical filters in silicon-oninsulator and their applications. In: Proceedings of the 4th IEEE International Conference on Group IV Photonics. 2007, 1-3

[5] Yu J, Yu H J, Zhu Y, Yu Y D. Theoretical and experimental studies of an ultra-compact photonic crystal corner mirror based on siliconon-insulator. In: Proceedings of the 5th IEEE International Conference on Group IV Photonics. 2008, 222-224

[6] Zhu Y, Li Z Y, HanW H, Fan Z C, Yu Y D, Yu J Z. High efficiency silicon-on-insulator grating coupler between submicron waveguides and fibers. Proceedings of SPIE, 2009, 7516: 75160A

[7] Klingshirn C F. Semiconductor Optics. Berlin: Springer-Verlag, 2005

[8] Gnutzmann U, Clausecker K. Theory of direct optical transitions in an optical indirect semiconductor with a superlattice structure. Applied Physics A, 1974, 3(1): 9-14

[9] Zachai R, Eberl K, Abstreiter G, Kasper E, Kibbel H. Photoluminescence in short period Si/Ge strained layer superlattices grown on Si and Ge substrates. Surface Science, 1990, 228(1-3): 267-269

[10] Pavesi L, Dal Negro L, Mazzoleni C, Franzo G, Priolo F. Optical gain in silicon nanocrystals. Nature, 2000, 408(6811): 440-444

[11] Cloutier S G, Kossyrev P A, Xu J. Optical gain and stimulated emission in periodic nanopatterned crystalline silicon. Nature Materials, 2005, 4(12): 887-891

[12] Kittler M, Reiche M, Arguirov T, Seifert W, Yu X. Silicon-based light emitters. Physica status solidi A, 2006, 203(4): 802-809

[13] Sze S M, Ng K K. Physics of Semiconductor Devices. 3rd ed. New York: Wiley, 2006

[14] Splett A, Zinke T, Petermann K, Kasper E, Kibbel H, Herzog H J, Presting H. Integration of waveguides and photodetectors using SiGe multi-quantum-wells with triangular shaped Ge-profile. In: Proceedings of Integrated Photonics Research, 1994, 3: 149-150

[15] Klinger S, Berroth M, Kaschel M, Oehme M, Kasper E. Ge on Si pi-n photodiodes with a 3-dB bandwidth of 49 GHz. IEEE Photonics Technology Letters, 2009, 21(13): 920-922

[16] Kaschel M, Oehme M, Kirfel O, Kasper E. Spectral responsivity of fast Ge photodetectors on SOI. Solid-State Electronics, 2009, 53(8): 909-911

[17] Oehme M,Werner J, Kasper E, Jutzi M, Berroth M. High bandwidth Ge p-i-n photodetector integrated on Si. Applied Physics Letters, 2006, 89(7): 071117

[18] Oehme M, Werner J, Kasper E, Klinger S, Berroth M. Photocurrent analysis of a fast Ge p-i-n detector on Si. Applied Physics Letters, 2007, 91(5): 051108

[19] Dehlinger G, Koester S J, Schaub J D, Chu J O, Ouyang Q C, Grill A. High-speed germanium-on-SOI lateral PIN photodiodes. IEEE Photonics Technology Letters, 2004, 16(11): 2547-2549

[20] Dosunmu O I, Cannon D D, EmsleyMK, Kimerling L C, ünlüMS. High-speed resonant cavity enhance Ge photodetectors on reflecting Si substrates for 1550-nm operation. IEEE Photonics Technology Letters, 2005, 17(1): 175-177

[21] Rouvière M, Vivien L, Le Roux X, Mangeney J, Crozat P, Hoarau C, Cassan E, Pascal D, Laval S, Fédéli J M, Damlencourt J F, Hartmann J M, Kolev S. Ultrahigh speed germanium-on-silicon-oninsulator photodetectors for 1.31 and 1.55 μm operation. Applied Physics Letters, 2005, 87(23): 231109

[22] Jutzi M, Berroth M, W hl G, Oehme M, Kasper E. Ge-on-Si vertical incidence photodiodes with 39-GHz bandwidth. IEEE Photonics Technology Letters, 2005, 17(7): 1510-1512

[23] Masini G, Capellin G, Witzens J, Gunn C. A 1550 nm, 10 Gbps monolithic optical receiver in 130 nm CMOS with integrated Ge waveguide photodetector. In: Proceedings of the 5th IEEE International Conference on Group IV Photonics. 2007, 28-30

[24] Vivien L, Marris-Morini D, Mangeney J, Crozat P, Cassan E, Laval S, Fédéli J M, Damlencourt J F, Lecunff Y. 42 GHz waveguide germanium-on-silicon vertical PIN photodetector. In: Proceedings of the 5th IEEE International Conference on Group IV Photonics. 2008, 185-187

[25] Suh D, Kim S, Joo J, Kim G, Kim I G. 35 GHz Ge p-i-n photodetectors implemented using RPCVD. In: Proceedings of the 5th IEEE International Conference on Group IV Photonics. 2008, 191-193

[26] Kasper E. Properties of Strained and Relaxed Silicon Germanium. London, UK: Institution of Electrical Engineers, 1995

[27] Kasper E, Paul D J. Silicon Quantum Integrated Circuits—Silicon-Germanium Heterostructure Devices: Basics and Realisations. Heidelberg: Springer-Verlag, 2005

[28] Kasper E, Klingshirn C. Semiconductor Quantum Structures: Optical Properties of Group IV Semiconductors. Optical Properties 3, Landolt B rnstein, New Series. Berlin: Springer-Verlag, 2007

[29] Kasper E, Müssig H J, Grimmeiss H G. Advances in Electronic Materials. Materials Science Forum. Zürich: TransTech Publications, 2009

[30] Yu J, Kasper E, Oehme M. 1.55-μm resonant cavity enhanced photodiode based on MBE grown Ge quantum dots. Thin Solid Films, 2006, 508(1-2): 396-398

Erich KASPER. Prospects and challenges of silicon/germanium on-chip optoelectronics[J]. Frontiers of Optoelectronics, 2010, 3(2): 143. Erich KASPER. Prospects and challenges of silicon/germanium on-chip optoelectronics[J]. Frontiers of Optoelectronics, 2010, 3(2): 143.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!