红外与激光工程, 2017, 46 (6): 0634001, 网络出版: 2017-07-10   

任意拓扑荷光学旋涡的产生及应用

Generation and application of optical vortices with arbitrary topological charges
作者单位
1 深圳大学 数学与统计学院, 广东 深圳 518060
2 南开大学 现代光学研究所 光电信息技术科学教育部重点实验室, 天津 300071
3 深圳大学 纳米光子学研究中心, 广东 深圳 518060
摘要
光学旋涡在很多领域开展了广泛的研究和应用。介绍了一种基于涡旋波片的光学旋涡产出方法, 并通过波片组合的方法可以产生任意拓扑荷的光学旋涡, 该方法具有很好的灵活性。同时由于波片的透过率非常高, 实验中拓扑荷为3 的光学旋涡的产生效率高达93%以上。通过干涉产生的叉形光栅叉数和方向进一步检测了产生光学旋涡的拓扑荷。利用产生的光学旋涡还进行了初步的光学操控实验, 验证了轨道角动量对于微颗粒的动态操控作用。该方法将在更多领域得到推广和应用。
Abstract
Optical vortex(OV) has been researched and applied in various front fields. Here, a novel method, by combining vortex retarders and half waveplates, was proposed to generate OVs with arbitrary topological charges. As the optical transmissivity of the waveplates were high, the energy efficiency of OV with topological charge of 3 was still higher than 93% in experiments. Further, the interference method was employed to detect topological charges of the generated OVs, by the direction and number of forks in the fork like pattern. As last, surface plasmon polariton (SPP) field was excited by highly focused OV with topological charge of 3, and gold particles were attracted and manipulated in the plasmonic vortex field. The results demonstrate significance of such method, and it will express enormous potential in various applications.
参考文献

[1] Soskin M, Vasnetsov M. Singular optics [J]. Progress in Optics, 2001, 42(4): 219-76.

[2] Dennis M R, O′holleran K, Padgett M J. Singular optics: optical vortices and polarization singularities[J]. Progress in Optics, 2009, 53: 293-363.

[3] Yao A M, Padgett M J. Orbital angular momentum: origins, behavior and applications[J]. Advances in Optics and Photonics, 2011, 3(2): 161-204.

[4] Wang Z, Zhang N, Yuan X C. High-volume optical vortex multiplexing and de-multiplexing for free-space optical communication[J]. Optics Express, 2011, 19(2): 482-492.

[5] 高春清, 张世坤, 付时尧, 等. 涡旋光束的自适应光学波前校正技术[J]. 红外与激光工程, 2017, 46(2): 0201001.

    Gao Chunqing, Zhang Shikun, Fu Shiyao, et al. Adaptive optics wavefront correction techniques of vortex beams [J]. Infrared and Laser Engineering, 2017, 46(2): 0201001. (in Chinese)

[6] Ng J, Lin Z, Chan C T. Theory of optical trapping by an optical vortex beam[J]. Physical Review Letters, 2009, 104(10): 103601.

[7] Szatkowski M, Popiofekmasajada A, Masajada J. Optical vortex in microscopy imaging[C]//Proceedings of SPIE, 2014, 9194: 91941D.

[8] Stephen M. Barnett. On the quantum core of an optical vortex[J]. Journal of Modern Optics, 2008, 55(14): 2279-2292.

[9] Fadeeva T A, Volyar A V, Alekseev A N. Recognition of the interference spiral image in a fiber optical sensor employing optical vortices[J]. Technical Physics Letters, 2004, 30(8): 622-625.

[10] Yuan X C, Ahluwalia B P S, Tao S H, et al. Wavelength-scalable micro-fabricated wedge for generation of optical vortex beam in optical manipulation[J]. Applied Physics B, 2007, 86(2): 209-213.

[11] Moh K J, Yuan X C, Bu J, et al. Generating radial or azimuthal polarization by axial sampling of circularly polarized vortex beams[J]. Applied Optics, 2007, 46(30):7544.

[12] 黄玲玲. 基于手性光场作用的超颖表面的相位调控特性及其应用[J]. 红外与激光工程, 2016, 45(6): 0634001.

    Huang Lingling. Phase modulation property of metasurfaces based on chiral field interaction and its applications[J]. Infrared and Laser Engineering, 2016, 45(6): 0634001. (in Chinese)

[13] Li Shaoxiang, Wang Zhenwei. Generation of optical vortex based on computer-generated holographic gratings by photolithography[J]. Applied Physics Letters, 2013, 103(14):141110.

[14] 朱艳英, 姚文颖, 李云涛, 等. 计算全息法产生涡旋光束的实验[J]. 红外与激光工程, 2014, 43(12): 3907-3911.

    Zhu Yanying, Yao Wenying, Li Yuntao, et al. Experiment of vertex beam generated by method of computer generated holography [J]. Infrared and Laser Engineering, 2014, 43(12): 3907-3911. (in Chinese)

[15] Moh K J, Yuan X C, Tang D Y, et al. Generation of femtosecond optical vortices using a single refractive optical element[J]. Applied Physics Letters, 2006, 88: 091103.

[16] Yu Tokizane, Kazuhiko Oka, Ryuji Morita. Supercontinuum optical vortex pulse generation without spatial or topological-charge dispersion[J]. Optics Express, 2009, 17: 14517.

[17] Mariyenko I G, Strohaber J, Uiterwaal C J G J. Creation of optical vortices in femtosecond pulses [J]. Optics Express, 2005, 13: 7599.

[18] Schwarz A, Rudolph W. Dispersion-compensating beam shaper for femtosecond optical vortex beams[J]. Optics Letters, 2008, 33(24): 2970-2972.

[19] Zhang Yuquan, Dou Xiujie, Yang Yong, et al. Flexible generation of femtosecond cylindrical vector beams[J]. Chinese Optics Letters, 2017, 15(3): 030007.

[20] Dienerowitz M, Mazilu M, Reece P J, et al. Optical vortex trap for resonant confinement of metal nanoparticles[J]. Optics Express, 2008, 16(7): 4991-4999.

[21] Zhang Y, Shi W, Shen Z, et al. A plasmonic spanner for metal particle manipulation[J]. Scientific Reports, 2015, 5: 15446.

步敬, 张莉超, 豆秀婕, 杨勇, 张聿全, 闵长俊. 任意拓扑荷光学旋涡的产生及应用[J]. 红外与激光工程, 2017, 46(6): 0634001. Bu Jing, Zhang Lichao, Dou Xiujie, Yang Yong, Zhang Yuquan, Min Changjun. Generation and application of optical vortices with arbitrary topological charges[J]. Infrared and Laser Engineering, 2017, 46(6): 0634001.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!