激光与光电子学进展, 2017, 54 (6): 060003, 网络出版: 2017-06-08   

连续纤维增强金属基复合材料研究进展及其激光熔覆 下载: 713次

Research Progress on Continuous Fiber-Reinforced Metal Matrix Composites and Their Laser Cladding
作者单位
1 天津工业大学激光技术研究所, 天津 300387
2 天津工业大学纺织学院, 天津 300387
摘要
对连续纤维增强铝基、镁基和钛基复合材料的制备方法、微结构与性能进行了综述,指出了存在的问题,提出了激光熔覆纤维增强金属基复合材料的新方法,即将纤维预置包埋在合金粉末中,然后进行快速激光熔覆。该方法能精确控制过程参数,大幅减少制备时间,可获得性能优异的复合材料。
Abstract
The preparation methods, microstructures and properties of continuous fiber-reinforced aluminum, magnesium and titanium matrix composites are summarized. The existing problems are pointed out and a new method of preparing the fiber reinforced metal matrix composites by laser cladding is put forward. The fibers are embedded into the cladding powder first and then processed by laser cladding rapidly. This method can precisely control the processing parameters, reduce the processing time, and make the composites with a better performance be obtained.
参考文献

[1] Shirvanimoghaddam K, Hamim S U, Akbari M K, et al. Carbon fiber reinforced metal matrix composites: Fabrication processes and properties[J]. Composites Part A: Applied Science and Manufacturing, 2017, 92: 70-96.

[2] Bunsell A R, Renard J. Fundamentals of fibre reinforced composite materials[J]. Materials Today, 2005, 8(9): 51.

[3] Kim J K, Mai Y W, Mai Y W. Engineered interfaces in fiber reinforced composites[M]. Amsterdam: Elsevier Press, 1998: 171-228.

[4] Daoud A. Microstructure and tensile properties of 2014 Al alloy reinforced with continuous carbon fibers manufactured by gas pressure infiltration[J]. Materials Science and Engineering: A, 2005, 391(1-2): 114-120.

[5] Okabe T, Nishikawa M, Takeda N, et al. Effect of matrix hardening on the tensile strength of alumina fiber-reinforced aluminum matrix composites[J]. Acta Materialia, 2006, 54(9): 2557-2566.

[6] 王 涛, 赵宇新, 付书红, 等. 连续纤维增强金属基复合材料的研制进展及关键问题[J]. 航空材料学报, 2013, 33(2): 87-96.

    Wang Tao, Zhao Yuxin, Fu Shuhong, et al. Progress and key problems in research and fabrication of fiber reinforced metal matrix composite[J]. Journal of Aeronautical Materials, 2013, 33(2): 87-96.

[7] 赵稼祥. 硼纤维及其复合材料[J]. 纤维复合材料, 2000, 12(4): 3-5.

    Zhao Jiaxiang. Boron fibers and their composites[J]. Fiber Composites, 2000, 12(4): 3-5.

[8] Kaczmar J W, Naplocha K, Morgiel J. Microstructure and strength of Al2O3 and carbon fiber reinforced 2024 aluminum alloy composites[J]. Journal of Materials Engineering and Performance, 2014, 23(8): 2801-2808.

[9] 辛世煊. 连续碳化硅长丝纤维生产技术现状[J]. 中国材料进展, 2014, 33(5): 312-320.

    Xin Shixuan. Current technologic state of continuous silicon carbide filament[J]. Materials China, 2014, 33(5): 312-320.

[10] 曹 峰, 李效东, 冯春祥, 等. 连续氧化铝纤维制造、性能与应用[J]. 宇航材料工艺, 1999, 29(6): 6-10.

    Cao Feng, Li Xiaodong, Feng Chunxiang, et al. Fabrication, properties and application of continuous alumina fibers[J]. Aerospace Materials and Technology, 1999, 29(6): 6-10.

[11] 张文龙, 陈嘉颐, 张 帆, 等. 连续氧化铝纤维增强铝基复合材料的新进展[J]. 材料导报, 2001, 15(6): 7-9.

    Zhang Wenlong, Chen Jiayi, Zhang Fan, et al. New progress in continuous alumina-fiber-reinforced aluminum matrix composites[J]. Materials Review, 2001, 15(6): 7-9.

[12] Bhav Singh B, Balasubramanian M. Processing and properties of copper-coated carbon fibre reinforced aluminium alloy composites[J]. Journal of Materials Processing Technology, 2009, 209(4): 2104-2110.

[13] Zhang J, Liu S, Lu Y, et al. Fabrication process and bending properties of carbon fibers reinforced Al-alloy matrix composites[J]. Journal of Materials Processing Technology, 2016, 231: 366-373.

[14] Vidal-Sétif M H, Lancin M, Marhic C, et al. On the role of brittle interfacial phases on the mechanical properties of carbon fibre reinforced Al-based matrix composites[J]. Materials Science and Engineering: A, 1999, 272(2): 321-333.

[15] Chen A S, Bushby R S, Scott V D. Deformation and damage mechanisms in fibre-reinforced aluminium alloy composites under tension[J]. Composites Part A: Applied Science and Manufacturing, 1997, 28(3): 289-297.

[16] Lancin M, Marhic C. TEM study of carbon fibre reinforced aluminium matrix composites: Influence of brittle phases and interface on mechanical properties[J]. Journal of the European Ceramic Society, 2000, 20(10): 1493-1503.

[17] Li S, Qi L, Zhang T, et al. Interfacial microstructure and tensile properties of carbon fiber reinforced Mg-Al-RE matrix composites[J]. Journal of Alloys and Compounds, 2016, 663: 686-692.

[18] Gupta N, Nguyen N Q, Rohatgi P K. Analysis of active cooling through nickel coated carbon fibers in the solidification processing of aluminum matrix composites[J]. Composites Part B: Engineering, 2011, 42(4): 916-925.

[19] 于志强, 武高辉, 孙东立. 铝基复合材料增强体涂层与界面[J]. 材料工程, 2001(10): 13-17.

    Yu Zhiqiang, Wu Gaohui, Sun Dongli. Reinforcement coatings and interfaces in aluminum metal matrix composites[J]. Journal of Materials Engineering, 2001(10): 13-17.

[20] Huang Y D, Hort N, Kainer K U. Thermal behavior of short fiber reinforced AlSi12CuMgNi piston alloys[J]. Composites Part A: Applied Science and Manufacturing, 2004, 35(2): 249-263.

[21] Rams J, Urea A, Escalera M D, et al. Electroless nickel coated short carbon fibres in aluminium matrix composites[J]. Composites Part A: Applied Science and Manufacturing, 2007, 38(2): 566-575.

[22] Tang Y, Liu L, Li W, et al. Interface characteristics and mechanical properties of short carbon fibers/Al composites with different coatings[J]. Applied Surface Science, 2009, 255(8): 4393-4400.

[23] Hu W, Weirich T, Hallstedt B, et al. Interface structure, chemistry and properties of NiAl composites fabricated from matrix-coated single-crystalline Al2O3 fibres (sapphire) with and without an hBN interlayer[J]. Acta Materialia, 2006, 54(9): 2473-2488.

[24] Xue L, Wang F, Ma Z, et al. Effects of surface-oxidation modification and heat treatment on silicon carbide 3D/AlCu5MgTi composites during vacuum-pressure infiltration[J]. Applied Surface Science, 2015, 356: 795-803.

[25] 梁旭明, 余 军, 尤传永. 新型复合材料合成芯导线技术综述[J]. 电网技术, 2006, 30(19): 1-6.

    Liang Xuming, Yu Jun, You Chuanyong. A survey of aluminium conductor with reinforced core of composite material[J]. Power System Technology, 2006, 30(19): 1-6.

[26] Degischer H P. Innovative light metals: Metal matrix composites and foamed aluminium[J]. Materials & Design, 1997, 18(4-6): 221-226.

[27] Wang W G, Xiao B L, Ma Z Y. Evolution of interfacial nanostructures and stress states in Mg matrix composites reinforced with coated continuous carbon fibers[J]. Composites Science and Technology, 2012, 72(2): 152-158.

[28] 李 坤, 裴志亮, 宫 骏, 等. 碳纤维表面SiO2涂层的制备及其在镁基复合材料中的应用[J]. 金属学报, 2007, 43(12): 1282-1286.

    Li Kun, Pei Zhiliang, Gong Jun, et al. Fabrication of SiO2 coating on carbon fiber and its application in Mg-based composite[J]. Acta Metallurgica Sinica, 2007, 43(12): 1282-1286.

[29] 王浩伟, 商宝禄, 郑来苏, 等. 涂层碳纤维增强镁基复合材料[J]. 复合材料学报, 1992, 9(2): 73-76.

    Wang Haowei, Shang Baolu, Zhen Laisu, et al. Coated carbon fiber reinforced magnesium matrix composites[J]. Acta Materiae Compositae Sinica, 1992, 9(2): 73-76.

[30] Russell-Stevens M, Todd R, Papakyriacou M. The effect of thermal cycling on the properties of a carbonfibre reinforced magnesium composite[J]. Materials Science and Engineering: A, 2005, 397(1-2): 249-256.

[31] Ochiai S, Murakami Y. The stability of tensile deformation of single ductile fibre-ductile matrix composites with weak interfaces[J]. Journal of Materials Science, 1980, 15(7): 1798-1803.

[32] Jayalakshmi S, Kailas S V, Seshan S. Tensile behaviour of squeeze cast AM100 magnesium alloy and its Al2O3 fibre reinforced composites[J]. Composites Part A: Applied Science and Manufacturing, 2002, 33(8): 1135-1140.

[33] Banerji A, Hu H, Alpas A T. Sliding wear mechanisms of magnesium composites AM60 reinforced with Al2O3 fibres under ultra-mild wear conditions[J]. Wear, 2013, 301(1-2): 626-635.

[34] Nayeb-Hashemi H. Mode I fatigue crack growth in a continuous alumina fibre-reinforced magnesium matrix composite[J]. International Journal of Fatigue, 1996, 18(5): 287-296.

[35] Hufenbach W, Andrich M, Langkamp A, et al. Fabrication technology and material characterization of carbon fibre reinforced magnesium[J]. Journal of Materials Processing Technology, 2006, 175(1-3): 218-224.

[36] 李佩桓, 张 勇, 王 涛, 等. 连续SiC纤维增强金属基复合材料研究进展[J]. 材料工程, 2016, 44(8): 121-129.

    Li Peihuan, Zhang Yong, Wang Tao, et al. Research progress on continuous SiC fiber reinforced metal matrix composite[J]. Journal of Materials Engineering, 2016, 44(8): 121-129.

[37] Vassel A. Continuous fibre reinforced titanium and aluminium composites: A comparison[J]. Materials Science and Engineering: A, 1999, 263(2): 305-313.

[38] Thomas M P, Winstone M R. Longitudinal yielding behaviour of SiC-fibre-reinforced titanium-matrix composites[J]. Composites Science and Technology, 1999, 59(2): 297-303.

[39] Sun Q, Luo X, Yang Y Q, et al. Analysis on the interfacial shear strength of fiber reinforced titanium matrix composites by shear lag method[J]. Materials Science and Engineering: A, 2015, 642: 262-267.

[40] Ramamurty U. Assessment of load transfer characteristics of a fiber-reinforced titanium-matrix composite[J]. Composites Science and Technology, 2005, 65(11-12): 1815-1825.

[41] Fu Y C, Shi N L, Zhang D Z, et al. Effect of C coating on the interfacial microstructure and properties of SiC fiber-reinforced Ti matrix composites[J]. Materials Science and Engineering: A, 2006, 426(1-2): 278-282.

[42] Luo X, Li C, Yang Y Q, et al. Microstructure and interface thermal stability of C/Mo double-coated SiC fiber reinforced γ-TiAl matrix composites[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(5): 1317-1325.

[43] Luo X, Yang Y, Yu Y, et al. Effect of Mo coating on the interface and mechanical properties of SiC fiber reinforced Ti6Al4V composites[J]. Materials Science and Engineering: A, 2012, 550(6): 286-292.

[44] Zhang W, Yang Y Q, Zhao G M, et al. Interfacial reaction studies of B4 C-coated and C-coated SiC fiber reinforced Ti-43Al-9V composites[J]. Intermetallics, 2014, 50(4): 14-19.

[45] Kong C Y, Soar R C. Fabrication of metal-matrix composites and adaptive composites using ultrasonic consolidation process[J]. Materials Science and Engineering: A, 2005, 412(1-2): 12-18.

[46] Shalu T, Abhilash E, Joseph M A. Development and characterization of liquid carbon fibre reinforced aluminium matrix composite[J]. Journal of Materials Processing Technology, 2009, 209(10): 4809-4813.

[47] 董 群, 陈礼清, 赵明久, 等. 镁基复合材料制备技术、性能及应用发展概况[J]. 材料导报, 2004, 18(4): 86-90.

    Dong Qun, Chen Liqing, Zhao Mingjiu, et al. Fabrication, properties and application of magnesium matrix composites[J]. Materials Review, 2004, 18(4): 86-90.

[48] Zhang J, Liu S, Lu Y, et al. Liquid rolling of woven carbon fibers reinforced Al5083-matrix composites[J]. Materials & Design, 2016, 95: 89-96.

[49] Alhashmy H A, Nganbe M. Laminate squeeze casting of carbon fiber reinforced aluminum matrix composites[J]. Materials & Design, 2015, 67: 154-158.

[50] 曾立英, 邓 炬, 白保良, 等. 连续纤维增强钛基复合材料研究概况[J]. 稀有金属材料与工程, 2000, 29(3): 68-72.

    Zeng Liying, Deng Ju, Bai Baoliang, et al. Research progress of continuous fiber reinforced titanium matrix composites[J]. Rare Metal Materials and Engineering, 2000, 29(3): 68-72.

[51] 宋建丽, 李永堂, 邓琦林, 等. 激光熔覆成形技术的研究进展[J]. 机械工程学报, 2010, 46(14): 29-39.

    Song Jianli, Li Yongtang, Deng Qilin, et al. Research progress of laser cladding forming technology[J]. Journal of Mechanical Engineering, 2010, 46(14): 29-39.

[52] 李福泉, 冯鑫友, 陈彦宾. WC含量对WC/Ni60A激光熔覆层微观组织的影响[J]. 中国激光, 2016, 43(4): 0403009.

    Li Fuquan, Feng Xinyou, Chen Yanbin. Influence of WC content on microstructure of WC/Ni60A laser cladding layer[J]. Chinese J Lasers, 2016, 43(4): 0403009.

[53] 段晓溪, 高士友, 顾勇飞, 等. 激光熔覆316L+SiC的强化机制和摩擦磨损性能研究[J]. 中国激光, 2016, 43(1): 0103004.

    Duan Xiaoxi, Gao Shiyou, Gu Yongfei, et al. Study on reinforcement mechanism and frictional wear properties of 316L-SiC mixed layer deposited by laser cladding[J]. Chinese J Lasers, 2016, 43(1): 0103004.

[54] 刘晓鹏, 张培磊, 卢云龙, 等. 纯铜表面激光熔覆Ni基硅化物涂层摩擦学性能研究[J]. 中国激光, 2015, 42(9): 0906005.

    Liu Xiaopeng, Zhang Peilei, Lu Yunlong, et al. Study on tribological properties of Ni-based silicide coating on copper by laser cladding[J]. Chinese J Lasers, 2015, 42(9): 0906005.

[55] 冯淑容, 张述泉, 王华明. 钛合金激光熔覆硬质颗粒增强金属间化合物复合涂层耐磨性[J]. 中国激光, 2012, 39(2): 0203002.

    Feng Shurong, Zhang Shuquan, Wang Huaming. Wear resistance of laser clad hard particles reinforced intermetallic composite coating on TA15 alloy[J]. Chinese J Lasers, 2012, 39(2): 0203002.

[56] Lin D, Liu C R, Cheng G J. Single-layer graphene oxide reinforced metal matrix composites by laser sintering: Microstructure and mechanical property enhancement[J]. Acta Materialia, 2014, 80: 183-193.

[57] Zhou S F, Wu C, Zhang T Y, et al. Carbon nanotube- and Fe p-reinforced copper-matrix composites by laser induction hybrid rapid cladding[J]. Scripta Materialia, 2014, 76(2): 25-28.

[58] 林英华, 雷永平. 激光原位制备高体积分数与长径比的TiB短纤维与TiB2P增强钛基复合涂层[J]. 中国激光, 2014, 41(7): 0703010.

    Lin Yinghua, Lei Yongping. High volume fraction and length-diameter ratio of TiB short fiber and TiB2P reinforce Ti-based alloy composite coatings by laser synthesis in-situ[J]. Chinese J Lasers, 2014, 41(7): 0703010.

[59] 雷剑波, 王春霞, 顾振杰, 等. 一种激光熔覆纤维增强金属基复合涂层的方法: CN201611106420.3[P]. 2016-12-05.

石川, 雷剑波, 周圣丰, 郭津博, 王威. 连续纤维增强金属基复合材料研究进展及其激光熔覆[J]. 激光与光电子学进展, 2017, 54(6): 060003. Shi Chuan, Lei Jianbo, Zhou Shengfeng, Guo Jinbo, Wang Wei. Research Progress on Continuous Fiber-Reinforced Metal Matrix Composites and Their Laser Cladding[J]. Laser & Optoelectronics Progress, 2017, 54(6): 060003.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!