红外与激光工程, 2020, 49 (9): 20201038, 网络出版: 2021-01-04   

基于超表面的超薄隐身器件 下载: 727次

Ultrathin invisibility cloaks based on metasurfaces
作者单位
南京大学 物理学院 固体微结构物理国家重点实验室 人工微结构科学与技术协同创新中心,江苏 南京 210093
摘要
隐身是人类自古以来的美妙幻想和愿望。近年来,随着人工微结构超构材料领域的不断发展,隐身具备了坚实的科学理论基础和实现条件。早期的隐身设计大多数是基于变换光学原理,科学家们利用超构材料实现了渐变的折射率并在多个频段实现了隐身现象。然而,变换光学隐身器件通常具有较大的尺寸且不易制备,这极大地限制了隐身器件的应用和发展。近年来,超表面作为超构材料的二维对应物,由于其轻薄特性、制备容易、以及强大的电磁波调控能力吸引了人们广泛的关注和研究兴趣。利用超表面实现的超薄隐身器件有望解除传统隐身器件对大尺寸和极端参数材料的依赖,进一步推动了隐身领域的发展,并使隐身器件迈向实际应用。文中对近年来基于超表面的超薄隐身器件的相关研究进行了简要的回顾,着重介绍了其隐身原理,实现方法以及优劣势,最后对领域发展前景和方向提出了一些建议。
Abstract
The invisibility cloak as a longstanding fantastic dream for humans is now within the realm of possibility, thanks to the development of metamaterials. Transformation-optics-based invisibility cloaks have been proposed and realized in many frequency ranges by utilizing gradient-index metamaterials. However, due to the large size of device and difficulty in fabrication, transformation-optics-based invisibility cloaks are significantly limited in practical applications. Recently, metasurfaces as the 2D counterpart of metamaterials have attracted tremendous interests because of its thin thickness and strong capability in manipulating the electromagnetic waves. Ultrathin invisibility cloaks based on metasurfaces release the demand on bulky sizes and extreme parameters, thus promoting further development of invisibility cloaks. This review overviewed recent progress in ultrathin invisibility cloaks based on metasurfaces, focusing particularly on the working principles, implementation methods, advantages and disadvantages. Finally, some advice was put forward on the trends of this fast-developing research field.

褚宏晨, 赖耘. 基于超表面的超薄隐身器件[J]. 红外与激光工程, 2020, 49(9): 20201038. Hongchen Chu, Yun Lai. Ultrathin invisibility cloaks based on metasurfaces[J]. Infrared and Laser Engineering, 2020, 49(9): 20201038.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!