中国激光, 2015, 42 (9): 0914002, 网络出版: 2015-09-06  

基于石墨烯带阵列的分子振动谱传感模型与仿真

Sensor Model and Simulation of Molecular Vibration Spectroscopy Based on Graphene Nanoribbon Arrays
作者单位
1 云南大学无线创新实验室, 云南 昆明 650091
2 北京理工大学信息与电子学院, 北京 100081
3 云南省高校谱传感与边疆无线电安全重点实验室, 云南 昆明 650091
摘要
分子振动谱广泛应用于化合物分子结构的测定、未知物的鉴定以及混合物成分的分析,是传感识别物质性质和特征的重要指纹。提出了基于石墨烯带阵列的分子振动谱传感模型,并采用数值仿真方法对模型进行了验证。结果表明,通过调节石墨烯带的化学势、阵列周期以及占空比,可以灵活地调控石墨烯带阵列的透射带宽;通过在检测区填充物质,发现透射谱的形状与被检测物的分子吸收谱一致,表明该传感器能够识别物质分子的振动指纹;透射谱的形状对检测区域填充物质的厚度不敏感,传感器的稳健性好。
Abstract
Molecular vibration spectrum is an important fingerprint for the identification of material properties and characteristics, which has been widely used to determine molecular structure, identify unknown compounds and analyze hybrid components. A molecular vibration spectroscopy sensor based on the graphene nanoribbon arrays is presented, and validated by numerical simulation. The results show that the transmission bandwidth of the graphene nanoribbon arrays can be flexibly controlled via tuning the chemical potential, period and duty ratio. The transmission coefficient of the sensor is consistent with the corresponding absorption spectrum after deposition of sample substance in the detected zone, which allows for the identification of molecular fingerprint. Moreover, the sensor has good robustness since the envelope of the transmission coefficient is independent on the thickness of the deposited sample substance.
参考文献

[1] F Schedin, A K Geim, S V Morozov, et al.. Detection of individual gas molecules adsorbed on graphene[J]. Nature Materials, 2007, 6(9): 652-655.

[2] A K Geim, K S Novoselov. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183-191.

[3] A H Castro Neto, F Guinea, N M R Peres, et al.. The electronic properties of graphene[J]. Reviews of Modern Physics, 2009, 81(1): 109-162.

[4] B Vasic′ , G Isic′ , R Gajic′ . Localized surface plasmon resonances in graphene ribbon arrays for sensing of dielectric environment at infrared frequencies[J]. Journal of Applied Physics, 2013, 113(1): 013110.

[5] R Verma, B D Gupta, R Jha. Sensitivity enhancement of a surface plasmon resonance based biomolecules sensor using graphene and silicon layers[J]. Sensors and Actuators B, 2011, 160(1): 623-631.

[6] J Wu, C H Zhou, J J Yu, et al.. Design of infrared surface plasmon resonance sensors based on graphene ribbon arrays[J]. Optics & Laser Technology, 2014, 59: 99-103.

[7] P K Maharana, R Jha, P Padhy. On the electric field enhancement and performance of SPR gas sensor based on graphene for visible and near infrared[J]. Sensors and Actuators B, 2015, 207: 117-122.

[8] F Bonaccorso, L Colombo, G H Yu, et al.. Graphene, related two- dimensional crystals, and hybrid systems for energy conversion and storage[J]. Science, 2015, 347(6217): 1246501.

[9] H S Chu, C H Gan. Active plasmonic switching at mid- infrared wavelengths with graphene ribbon arrays[J]. Applied Physics Letters, 2013, 102(23): 231107.

[10] S Thongrattanasiri, F H L Koppens, J G D Abajo. Complete optical absorption in periodically patterned graphene[J]. Physical Review Letters, 2012, 108(4): 047401.

[11] R Alaee, M Farhat, C Rockstuhl, et al.. A perfect absorber made of a graphene micro-ribbon metamaterial[J]. Optics Express, 2012, 20(27): 28017-28024.

[12] F Xia, T Mueller, Y M Lin, et al.. Ultrafast graphene photodetector[J]. Nature Nanotechnology, 2009, 4(12): 839-843.

[13] J Christensen, A Manjavacas, S Thongrattanasiri, et al.. Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons[J]. ACS Nano, 2012, 6(1): 431-440.

[14] K S Novoselov. Nobel lecture: Graphene: Materials in the flatland[J]. Reviews of Modern Physics, 2011, 83(3): 837-849.

[15] Y Francescato, V Giannini, J J Yang, et al.. Graphene sandwiches as a platform for broadband molecular spectroscopy[J]. ACS Photonics, 2014, 1(5): 437-443.

[16] H J Li, L L Wang, Z R Huang, et al.. Mid- infrared, plasmonic switches and directional couplers induced by graphene sheets coupling system[J]. Europhysics Letters, 2013, 104(3): 37001.

[17] W Gao, J Shu, C Qiu, et al.. Excitation of plasmonic waves in graphene by guided-mode resonances[J]. ACS Nano, 2012, 6(9): 7806-7813.

[18] L A Falkovsky, S S Pershoguba. Optical far- infrared properties of a graphene monolayer and multilayer[J]. Physical Review B, 2007, 76(15): 153410.

[19] K S Novoselov, A K Geim, S V Morozov, et al.. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 2005, 438(7065): 197-200.

[20] G W Hanson. Dyadic Green′s functions and guided surfacewaves for a surface conductivity model of graphene[J]. Journal of Applied Physics, 2008, 103(6): 064302.

[21] 邓芹英, 刘岚, 邓慧敏. 波谱分析教程[M]. 北京: 科学出版社, 2007: 54-57.

    Deng Qinying, Liu Lan, Deng Huimin. Spectrum Analysis Tutorial[M]. Beijing: Science Press, 2007: 54-57.

邓伟, 杨晶晶, 闫肃, 杨剑锋, 黄铭. 基于石墨烯带阵列的分子振动谱传感模型与仿真[J]. 中国激光, 2015, 42(9): 0914002. Deng Wei, Yang Jingjing, Yan Su, Yang Jianfeng, Huang Ming. Sensor Model and Simulation of Molecular Vibration Spectroscopy Based on Graphene Nanoribbon Arrays[J]. Chinese Journal of Lasers, 2015, 42(9): 0914002.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!