红外与毫米波学报, 2014, 33 (4): 420, 网络出版: 2014-09-01   

激波管等离子体中太赫兹波传输特性仿真与实验研究

Terahertz wave transmission characteristics in the plasma produced by shock tube
作者单位
1 中国空气动力研究与发展中心 超高速所 四川 绵阳621000
2 电子科技大学 物理电子学院 四川 成都610054
3 激波管等离子体中太赫兹波传输特性仿真与实验研究
摘要
研究了太赫兹波在透射波窗口封闭的激波管中的等离子体中的传输特性,获得了传输衰减量随等离子体电子密度、碰撞频率、透波窗口材料以及电磁波频率的变化规律,并比较了相同条件下毫米波的传输特性.利用激波管为实验平台模拟产生高速飞行器等离子体,开展了太赫兹波在等离子体中传输特性实验.结果表明,太赫兹波在相同电子密度和碰撞频率的等离子体中衰减量比毫米波小得多; 随着等离子体碰撞频率的增加,太赫兹波传输衰减量先增加后减小,透波窗口增加了太赫兹波的传输衰减; 随着窗口材料的介电常数增加,太赫兹波反射率增加,太赫兹波传输衰减曲线出现周期性振荡,振荡周期约5GHz; 太赫兹波通信可能作为一种解决再入飞行器黑障问题的有效技术途径.
Abstract
The transmission characteristics of millimeter wave and terahertz wave in the nonmagnetic collisional plasma were investigated to meet the need of reentry aero-craft communication. The laws of electromagnetic wave transmission attenuation dependent on electron density, collision frequency, dielectric coefficient change of the antenna window material and electron frequency were obtained. The terahertz wave transmission attenuation (TWTA) is more fader than millimeter wave transmission attenuation (MWTA) in the same plasma. Both TWTA and MWTA in the plasma are at first enhanced and then impeded with increase of collision frequency of the plasma. With the increase of the dielectric coefficient of the antenna window material, MWTW is uplifted and there is a periodic oscillation in the MWTA curve, the periods of which is 5GHz. TWTA experiment was carried out on the shock tube. The results are in agreement with the calculation. Terahertz wave can be likely used as the media to resolve communications blackout on reentry aero-craft.
参考文献

[1] Cuddiby W F, Beckwitb I E, Scbroeder L C. RAM B2 flight test of a method for reducting radio attenuation during hpersonic reentry[C], NASA TMX902, 1963.

[2] Jones, Charles H. Report from the workshop on communications through plasma during hypersonic flight[C], AFFTC-PA-08-08292, Air Force Flight Test Center Edwards AFB, California Technical Chair, Held 29 August 2006 Boston, MA.

[3] Hartunian R H, Stewart G E, Fergason S D. Cause and mitigation of radio frequency (RF) blackout during reentry of reusable launch vehicle[R]. ATR-20075309.

[4] Saterlie, S.E. Ground test measurement of hypersonic flow field plasma effects[C]. Proceedings of the 1990 AIAA Missile Science Conference, Vol.4, Naval Post Graduate School, Montery CA, Nov.1990.

[5] Tony C. Lin, L. K. Sproul. Reentry plasma effects on electromagnetic wave propagation[C]. AIAA 951942, 26th AIAA Plasmadynamics and Lasers Conference, June 1922, 1995, San Diego, CA.

[6] Minkwan Kim, Michael Keidar, etc. Analysis of an electromagnetic Mitigation Scheme for Reentry Telemetry Through Plasma[J]. JOURNAL OF SPACECRAFT AND ROCKETS, Vol.45, No.6, November-December 2008.

[7] W.H.Rudderow. An experimental study of the effect of a thin plasma layer on high power microwave transmission. AFCRLTR750098, ADA08514[R].

[8] Hartunian R A, Stewart G. E, Fergason S D. Cause and mitigation of radio frequency(RF) blackout during reentry of reusable launch vehicles[R], Aerospace Report, ATR2007(5309)1.

[9] Yuan C X, Zhou Z X, Zhang J W, et al. FDTD analysis of terahertz wave propagation in a high-temperature unmagnetized plasma slab[J]. IEEE Transactions on Plasma Science, 2011,39(7): 15771584.

[10] Chengxun Yuan, Zhongxiang Zhou, Xiaoli Xiang, et al. Propagation properties of broadband terahertz pulses through a bounded magnetized thermal plasma[J]. Nuclear Instruments and Methods in Physics Research B 269(2011): 23-29.

[11] Tosun Z, Akbar D, Altan H. The interaction of terahertz pulses with dc glow discharge plasma[C], 34th International Conference on Infrared, Millimeter, and Terhertz Waves Busan, Korea, September 2125, 2009.

[12] ZHANG Jin-Ling, LV Ying-Hua, ZHANG Hong-Xin. Terahertz communication systems and terahertz antenna technology[J]. Chinese Journal of Radio Science(Supplement)(张金玲,吕英华,张洪欣.太赫兹通信系统和太赫兹天线技术.电波科学学报(增刊).2011, 26: 39-42.

[13] WANG Yue, WU Qun, WU Yu-Ming,et al. Theoretical study and numerical verification of terahertz radiation emitted by carbon nanotubes[J]. ACTA PHYSICA SINICA(王玥,吴群,吴昱明,等.碳纳米管辐射太赫兹波的理论分析与数值验证,物理学报). 2011, 60(5): 8459-8465.

[14] SHEN Jin-E, RONG Jian, LIU Wen-Xin. Progress of terahertz in communiciation technology[J]. Infrared and Laser Engineering(申金娥, 荣健,刘文鑫.太赫兹技术在通信方面的进展.红外与激光工程), 2006, 35(增刊): 342-343.

[15] WANG Guang-Qiang, WANG Jian-Guo, LI Xiao-Ze, et al. Frequency measurement of 0. 14THz high-power terahertz pulse[J]. ACTA PHYSICA SINICA(王光强,王建国,李小泽,等.0.14THz高功率太赫兹脉冲的频率测量,物理学报). 2010,59(12): 8459-8463.

[16] CAO Jun-Cheng. Semiconductor terahertz source, detecor and application[M]. Mathematical Publishing Bureau(曹俊诚.半导体太赫兹源、探测器与应用,数理出版分社) 2012.

[17] GU Li, TAN Zhi-Yong, CAO Jun-Cheng. Terahertz ccommunication technology[J]. Physics(顾立,谭智勇,曹俊成.太赫兹通信技术研究进展,物理) 2013, 442(10): 695-707.

[18] ZHAO Qing, LIU Shu-Zhang, TONG Hong-Hui. Plasma technology and its applications[M]. National Defense Industry Press(赵青,刘述章,童洪辉.等离子体技术及应用,国防工业出版社). 2005.

[19] MA Ping, ZENG Xue-Jun, SHI An-Hua, et al. Experimental investigaiton on electromagnetic wave transmission characteristic in the plasma high temperature gas[J]. Journal of Experiments in the Fluid Mechanics(马平,曾学军,石安华,等.电磁波在等离子体高温气体中传输特性实验研究,实验流体力学), 2010, 24(5): 51-56.

马平, 秦龙, 石安华, 赵青, 陈伟军, 黄洁. 激波管等离子体中太赫兹波传输特性仿真与实验研究[J]. 红外与毫米波学报, 2014, 33(4): 420. MA Ping, QIN Long, SHI An-Hua, ZHAO Qing, CHEN Wei-Jun, HUANG Jie. Terahertz wave transmission characteristics in the plasma produced by shock tube[J]. Journal of Infrared and Millimeter Waves, 2014, 33(4): 420.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!