红外与激光工程, 2017, 46 (12): 1218001, 网络出版: 2018-01-19   

空间衍射望远镜自展开结构设计

Design of the spontaneous deployable structure for space diffractive telescope
作者单位
1 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院大学, 北京 100049
摘要
为了满足空间探测对衍射望远镜的发展需求, 针对某衍射光学系统设计了一种空间可展开衍射望远镜。首先, 根据Serrurier桁架原理及优化设计理论确定了文中所用展开结构的形式及几何尺寸, 并针对某衍射光学系统设计了一种新型自展开结构; 其次, 建立了该展开结构的有限元模型并分析了其展开后的特性; 最后, 搭建了原理样机并对其进行了实验研究。实验结果表明: 该展开结构的展开距离为2.9 m, 展开后的重复精度误差小于2 mm, 偏心小于0.3 mm, 倾角小于0.2°, 且可通过促动器将其展开精度调整至微米级, 能够满足空间衍射望远镜自展开机构的结构简单、质量轻、稳定可靠、精度高等要求。
Abstract
In order to satisfy the demand for the space diffraction telescope in space exploration, a new deployable space diffractive telescope was designed, which aimed at one diffraction optical system. Firstly, the structural form and geometrical sizes of the spontaneous deployable structure used in this article were preliminarily designated through the Serrurier truss theory and the optimization design theory, and a new spontaneous deployable structure was designed aiming at one diffractive optical system. Secondly, the finite element model of the deployable structure was built, and its deployment characters were analyzed. Finally, the prototype of the spontaneous deployable structure was built up and the experiment was carried out to study its characteristics. Experimental results indicate that the deployable structure is 2.9 m in length, its repetitive deploy accuracy can reach less than 2 mm, the decentration is less than 0.3 mm. Besides, the deploy accuracy can be adjusted to micrometer level by actuators when it has deployed. It can satisfy the deployment structure′s requirements of simple mechanics, low mass, steady and reliable deployment, as well as higher precision for the space diffractive telescope.
参考文献

[1] 刘韬, 周一鸣, 王景泉, 等. 波带片衍射成像技术在对地观测卫星中的应用[J]. 航天器工程, 2012, 21(3): 88-95.

    Liu Tao, Zhou Yiming, Wang Jingquan, et al. Application of zone plate diffractive imaging technology in earth observation satellites[J]. Spacecraft Engineering, 2012, 21(3): 88-95. (in Chinese)

[2] Hyde R. Eyeglass: A very large aperture diffractive space telescope [C]//SPIE, 2002, 4849: 28-39.

[3] Howard A, Mac Ewen, James B, et al. Large diffractive/refractive apertures for space and airborne telescopes[C]//SPIE, 2013, 8739: 873904.

[4] Geoff P Andersen, Olha Asmolova. FalconSAT-7: A membrane space telescope[C]//SPIE, 2014, 9143: 91431X.

[5] Geoff Andersen, Olha Asmolova, Michael E Dearborn, et al. FalconSAT-7: a membrane photon sieve cubeSat solar telescope[C]//SPIE, 2012, 8442: 84421C.

[6] 程冠晓, 邢廷文, 林妩媚, 等. 微米孔陈列振幅型光子筛的设计和制作[J]. 传感技术学报, 2006, 19(5): 2344-2347.

    Cheng Guanxiao, Xing Tingwen, Lin Wumei, et al. Design and fabrication of low-numerical-aperture amplitude-photon sieve[J]. Chinese Journal of Sensors and Actuators, 2006, 19(5): 2344-2347. (in Chinese)

[7] 刘民哲, 刘华, 许文斌, 等. 用于空间望远镜的薄膜光子筛[J]. 光学 精密工程, 2014, 22(8): 2127-2134.

    Liu Minzhe, Liu Hua, Xu Wenbin, et al. Membrane photon sieve for space telescope[J]. Optics and Precision Engineering, 2014, 22(8): 2127-2134. (in Chinese)

[8] 张键, 栗梦娟, 阴刚华, 等. 用于太空望远镜的大口径薄膜菲涅尔衍射元件[J]. 光学 精密工程, 2016, 24(6): 1289-1296.

    Zhang Jian, Li Mengjuan, Yin Ganghua, et al. Large-diameter membrane Fresnel diffraction elements for space telescope[J]. Optics and Precision Engineering, 2016, 24(6): 1289-1296. (in Chinese)

[9] 郑耀辉, 阮萍, 曹尚. 空间衍射薄膜望远镜展开机构设计与分析[J]. 红外与激光工程, 2016, 45(1): 0118004.

    Zheng Yaohui, Ruan Ping, Cao Shang. Deployable structure design and analysis for space membrane diffractive telescope[J]. Infrared and Laser Engineering, 2016, 45(1): 0118004. (in Chinese)

[10] 殷可为, 黄智强, 林妩媚, 等. 衍射光学元件设计参数对杂散光的影响[J]. 红外与激光工程, 2013, 42(11): 3059-3064.

    Yin Kewei, Huang Zhiqiang, Lin Wumei, et al. Effects of design parameters of diffractive optical element on stray light[J]. Infrared and Laser Engineering, 2013, 42(11): 3059-3064. (in Chinese)

[11] Paul R Yoder, Jr. Opto-Mechanical Systems Design[M]. Zhou Haixian, Cheng Yunfang, Translated Beijing: China Machine Press, 2008: 676-679. (in Chinese)

[12] 张雷, 贾学志. 大型离轴三反相机桁架式主支撑结构的设计与优化[J]. 光学 精密工程, 2009, 17(3): 603-608.

    Zhang Lei, Jia Xuezhi. Design and optimization of trussed supporting structure for off-axis three-mirror reflective space camera[J]. Optics and Precision Engineering, 2009, 17(3): 603-608. (in Chinese)

[13] 李畅, 何欣. 基于Rayleigh算法的空间相机桁架结构设计与优化[J]. 红外与激光工程, 2012, 41(9): 2405-2409.

    Li Chang, He Xin. Design and optimization of trussed structure for space camera based on Rayleigh algorithm[J]. Infrared and Laser Engineering, 2012, 41(9): 2405-2409. (in Chinese)

[14] 李创, 王炜, 樊学武. 基于带状弹簧的空间望远镜精密展开技术进展[J]. 中国光学与应用光学, 2009, 2(2): 85-90.

    Li Chuang, Wang Wei, Fan Xuewu. Advance in precision deployment techniques for space telescopes based on tape springs[J]. Chinese Journal of Optics and Applied Optics, 2009, 2(2): 85-90. (in Chinese)

[15] Roberto Gardi, Giulia Pica. Realization and preliminary tests on an innovative deployable structure for a high resolution telescope for microsatellite[C]//SPIE, 2004, 5570: 411-422.

[16] Zhao Chao, Li Chuang, Zhou Nan. A deployable telescope imaging system with coilable tensegrity structure for microsatellite application[C]//SPIE, 2013, 8908(2): 165-189.

左玉弟, 金光, 李宗轩, 解鹏, 杨丰福. 空间衍射望远镜自展开结构设计[J]. 红外与激光工程, 2017, 46(12): 1218001. Zuo Yudi, Jin Guang, Li Zongxuan, Xie Peng, Yang Fengfu. Design of the spontaneous deployable structure for space diffractive telescope[J]. Infrared and Laser Engineering, 2017, 46(12): 1218001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!