红外与激光工程, 2017, 46 (2): 0217001, 网络出版: 2017-03-31   

采用萨格纳克干涉仪与螺旋相位片生成矢量光束

Generation of vector beams by Sagnac interferometer and spiral phase plates
作者单位
1 北京信息科技大学 光电信息与仪器北京市工程研究中心, 北京 100016
2 北京信息科技大学 光电测试技术北京市重点实验室, 北京 100192
摘要
萨格纳克干涉仪中传播的两束光具有相同的光程, 因而适合用于高稳定的合束系统, 螺旋相位片作为无源、分离器件具有螺旋光束转化效率高、工作环境适用条件低等优点。研究将萨格纳克干涉仪和螺旋相位片结合起来生成矢量光束的方法具有重要的研究意义。通过分析光束的轨道角动量态和偏振态在萨格纳克干涉仪中的演化规律, 优化设计出了等腰直角三角形的合束光路结构。合束装置可以不使用1/2波片进行光束偏振态调制, 因此光路结构更紧凑和稳定。通过旋转检偏器方法测量了生成矢量光束的阶数。实验结果证实了合束方法的高稳定性和高效率。
Abstract
Two beams in the traveling the same path with opposite directions makes it is more suitable for stability beam combination. As a passive and separation device, spiral phase plate has the advantages of high efficiency and low working conditions. It has important significance to propose a method to generation vector beam with Sagnac interferometer and spiral phase plate combination. By analyzing the evolution of the orbital angular momentum states and the polarization states of the beams in the Sagnac interferometer, an isosceles right triangle optical structure beam combination system was designed. Without half wave plate, the optical structure was more compact and stability. The order of generated vector beams were checked with rotation of polarizer. The experimental results confirm the high stability and high efficiency of the combined beam method.
参考文献

[1] 马亮, 吴逢铁. 新型组合正轴棱锥产生局域空心光束[J].红外与激光工程, 2011, 40(10): 1988-1991.

    Ma Liang, Wu Fengtie. New combined positive axicon for generating bottle beam [J]. Infrared and Laser Engineering, 2011, 40(10): 1988-1991. (in Chinese)

[2] 徐弼军. 椭圆对称奇异空心光束通过硬边光阑的传输特性[J]. 红外与激光工程, 2011, 40(10): 1985-1987.

    Xu Bijun. Propagation properties of elliptical symmetry anomalous hollow beams through a circular aperture [J]. Infrared and Laser Engineering, 2011, 40(10): 1985-1987. (in Chinese)

[3] 朱艳英, 姚文颖, 李云涛, 等. 计算全息法产生涡旋光束的实验[J]. 红外与激光工程, 2014, 43(12): 3907-3911.

    Zhu Yanying, Yao Wenying, Li Yuntao, et al. Experiment of vertex beam generated by method of computer generated holography [J]. Infrared and Laser Engineering, 2014, 43(12): 3907-3911. (in Chinese)

[4] Zhan Q. Cylindrical vector beams: from mathematical concepts to applications[J]. Advances in Optics and Photonics, 2009, 1(1): 1-57.

[5] Lin Jian, Zheng Wei, Wang Haifeng, et al. Effects of scatterers′ sizes on near-field coherent anti-Stokes Raman scattering under tightly focused radially and linearly polarized light excitation[J]. Opt Express, 2010, 18: 10888-10895.

[6] Kawauchi H, Yonezawa K, Kozawa Y, et al. Calculation of optical trapping forces on a dielectric sphere in the ray optics regime produced by a radially polarized laser beam [J]. Opt Lett, 2007, 32: 1839-1841.

[7] Liu Y, Cline D, He P. Vacuum laser acceleration using a radially polarized CO2 laser beam[J]. Nuclear Instruments and Methods in Physics Research A, 1999, 424: 296-303.

[8] Niziev V G, Nesterov A V. Influence of beam polarization on laser cutting efficiency[J]. Journal of Physics D Applied Physics, 1999, 32: 1455-1461.

[9] Zhan Q. Evanescent Bessel beam generation via surface plasmon resonance by radially polarized beam [J]. Opt Lett, 2006, 31: 1726-1728.

[10] Julio T Barreiro, Tzu-Chieh Wei, Paul G Kwia. Remote preparation of single-photon "Hybrid" entangled and vector-polarization states [J]. Phys Rev Lett, 2010, 105: 030407.

[11] Li Xiangping, Cao Yaoyu, Gu Min. Superresolution-focal-volume induced 3.0 Tbytes/disk capacity by focusing a radially polarized beam [J]. Opt Lett, 2011, 36: 2510-2512. Meier M, Romano V, Feurer T. Material processing with pulsed radially and azimuthally polarized laser radiation [J]. Appl Phys A, 2007, 86: 329-334.

[12] Tian Bo, Pu Jixiong. Tight focusing of a double-ring-shaped azimuthally polarized beam [J]. Opt Lett, 2011, 36(11): 2014-2016.

[13] Cheng Wen, Joseph W H, Zhan Qiwen. Propagation of vector vortex beams through a turbulent atmosphere[J]. Opt Express, 2009, 17: 17829-17836.

[14] Tidwell, Steve C, Dennis H Ford, et al. Generating radially polarized beams interferometrically[J]. Applied Optics, 1990, 29: 2234.

[15] Jones P H, Rashid M, Makita L M O, et al. Sagnac interferometer method for synthesis of fractional polarization vortices, [J]. Opt Lett, 2000, 34: 2560.

[16] Niziev V G, Chang R S, Nesterov A V. Generation of inhomogeneously polarized laser beams by use of a Sagnac interferometer[J]. Appl Opt, 2006, 45(33): 8393-8399.

[17] Fu S, Gao C, Shi Y, et al. Generating polarization vortices by using helical beams and a twyman green interferometer[J]. Opt Lett, 2015, 40: 1775.

[18] Xin Jingtao, Gao Chunqing, Wang Zheng, et al. Generation of polarization vortices with a Wollaston prism and an interferometric arrangement[J]. Appl Opt, 2012, 52: 7077-7094.

[19] Moreno I, Davis J A, Ruiz I, et al. Decomposition of radially and azimuthally polarized beams using a circular-polarization and vortex-sensing diffraction grating [J]. Opt Express, 2010, 7: 7173-7183.

辛璟焘, 李凯, 张雯, 娄小平, 祝连庆. 采用萨格纳克干涉仪与螺旋相位片生成矢量光束[J]. 红外与激光工程, 2017, 46(2): 0217001. Xin Jingtao, Li Kai, Zhang Wen, Lou Xiaoping, Zhu Lianqing. Generation of vector beams by Sagnac interferometer and spiral phase plates[J]. Infrared and Laser Engineering, 2017, 46(2): 0217001.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!