中国激光, 2016, 43 (5): 0502005, 网络出版: 2016-05-04   

量子保密通信用增益开关半导体脉冲激光器 下载: 525次

Gain-Switched Semiconductor Pulsed Laser for Quantum Secure Communication
作者单位
1 电子科技大学光电信息学院, 四川 成都 610054
2 保密通信重点实验室, 四川 成都 610041
摘要
近30年来,量子信息科技是令人激动的研究领域之一。其中,量子保密通信技术,已逐渐开始从实验研究迈向工程应用,有望率先实现商用化发展。面向量子保密通信系统的全面普及和推广,基于半导体激光器的增益开关效应和商品电子学芯片,设计和实现了皮秒脉冲激光器模块。其特点包括:工作波长位于光纤量子信道的低损窗口,即1.5 μm波段;输出光频的波动小于20 MHz;光脉冲的时域宽度为10个皮秒量级;输出光脉冲间不具有确定的相位关系。进一步地,结合“弱相干”单光子源在量子保密通信技术中的应用,对上述特点进行检验和讨论。
Abstract
In the last three decades, quantum information science and technology is one of the most exciting research fields. Among all the achievements, quantum secure communication technology is gradually started from experimental research to engineering application and expected to take the lead in achieving the commercial development. Towards the comprehensive popularization of the quantum secure communication system, a picosecond pulsed laser module has been designed and fabricated based on the gain-switching effect of the semiconductor laser and commercial electronic chips. The realized laser module has the following properties: operating wavelength at the low transmission loss window of fiber quantum channel, i.e., 1.5 μm; with a frequency fluctuation of less than 20 MHz; pulse time domain width of tens of picoseconds; no fixed phase correlation between any two pulses. Moreover, these properties are verified and discussed based on the requirement of weak coherent single photon source for quantum secure communication application.
参考文献

[1] 曾谨言. 量子力学[M]. 北京: 科学出版社, 2007.

[2] Nielsen M A, Chuang I L. Quantum computation and quantum information[M]. Cambridge: Cambridge University Press, 2000.

[3] 周正威, 陈巍, 孙方稳, 等. 量子信息技术纵览[J]. 科学通报, 2012, 57(17): 1498-1525.

    Zhou Zhengwei, Chen Wei, Sun Fangwen, et al.. A survey on quantum information technology[J]. Chin Sci Bull, 2012, 57(17): 1498-1525.

[4] Kurizki G, Bertet P, Kubo Y, et al.. Quantum technologies with hybrid systems[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(13): 3866-3873.

[5] Bennett C H, Brassard G. Quantum cryptography: Public key distribution and coin tossing[J]. Theoretical Computer Science, 2014, 560(1-4): 7-11.

[6] Liu Yang, Chen Tengyun, Wang Jian, et al.. Decoy-state quantum key distribution with polarized photons over 200 km[J]. Optics Express, 2010, 18(8): 8587-8594.

[7] Sasaki M, Fujiwara M, Ishizuka H, et al.. Field test of quantum key distribution in the Tokyo QKD network[J]. Optics Express, 2011, 19(11): 10387-10409.

[8] Lo H K, Curty M, Qi B. Measurement-device-independent quantum key distribution[J]. Phys Rev Lett, 2012, 108(13): 130503.

[9] 周炳琨, 高以智, 陈倜嵘, 等. 激光原理[M]. 北京: 国防工业出版社, 2000.

    Zhou Bingkun, Gao Yizhi, Chen Tirong, et al.. The principle of laser[M]. Beijing: Nation Defense Industry Press, 2000.

[10] 王旌, 张洪明, 张鋆, 等. 基于饱和吸收镜的被动锁模光纤激光器[J]. 中国激光, 2007, 34(2): 163-165.

    Wang Jing, Zhang Hongming, Zhang Jun, et al.. Passively mode-locked fiber laser with a semiconductor saturable absorber mirror[J]. Chinese J Lasers, 2007, 34(2): 163-165.

[11] Lau K Y. Gain switching of semiconductor injection lasers[J]. Applied Physics Letters, 1988, 52(4): 257-259.

[12] 朱辰, 王雄飞, 张昆, 等. 基于增益开关LD的高功率脉冲光纤激光器研究[J]. 激光与红外, 2014, 44(2): 145-148.

    Zhu Chen, Wang Xiongfei, Zhang Kun, et al.. Experimental study of high power pulse fiber laser based on gain-switched LD[J]. Laser & Infrared, 2014, 44(2): 145-148.

[13] 王雄, 周朴, 王小林, 等. 混合抽运和增益开关铥/钬共掺脉冲光纤激光器对比研究[J]. 中国激光, 2014, 41(3): 0302010.

    Wang Xiong, Zhou Pu, Wang Xiaolin, et al.. Contrastive research on hybrid-pump pulse and gain-switch pulse Tm-Ho co-doped fiber lasers[J]. Chinese J Lasers, 2014, 41(3): 0302010.

[14] 金东臣, 孙若愚, 魏守宇, 等. 基于光纤被动调Q的1570 nm纳秒脉冲铒镱双掺全光纤双腔激光器[J]. 中国激光, 2015, 42(10): 1002006.

    Jin Dongchen, Sun Ruoyu, Wei Shouyu, et al.. 1570 nm nanosecond pulse generation from Er/Yb co-doped all-fiber dual-cavity laser with fiber-based passive Q-switched[J]. Chinese J Lasers, 2015, 42(10): 1002006.

[15] Yuan Z L, Lucamarini M, Dynes J F, et al.. Robust random number generation using steady-state emission of gain-switched laser diodes[J]. Appl Phys Lett, 2014, 104: 261112.

[16] 周复正, 马国彬, 沈丽青, 等. 半导体激光器的微微秒增益开关特性研究[J]. 物理学报, 1994, 43(4): 580-590.

    Zhou Fuzheng, Ma Guobin, Shen Liqing, et al.. Studies on the ps gain-switching of a semiconductor laser[J]. Acta Phys Sin, 1994, 43(4): 580-590.

[17] 马晓红, 于晋龙, 戴居丰, 等. 激光器速率方程参数的实验提取及动态特性实验[J]. 电子学报, 2002, 30(9): 1295-1297.

    Ma Xiaohong, Yu Jinlong, Dai Jufeng, et al.. Extraction of the parameters of laser rate equation by measurement and dynamic character experiment[J]. Acta Electronics Sinica, 2002, 30(9): 1295-1297.

[18] 邱昆, 高以智, 周炳琨. 长波长1.3 μm直接调制InGaAsP/InP半导体激光器产生超短光脉冲[J]. 高速摄影与光子学, 1991, 20(1): 38-40.

    Qiu Kun, Gao Yizhi, Zhou Bingkun. Production of ultrashort optical pulses by direct modulation of a 1.3 μm InGaAsP/InP semiconductor laser diode[J]. High Speed Photography and Photonics, 1991, 20(1): 38-40.

[19] 王云才. 增益开关半导体激光器在外光注入下脉冲抖动的实验研究[J]. 物理学报, 2003, 52(9): 2190-2193.

    Wang Yuncai. Experimental study on the timing jitter of gain-switched laser diodes with photon injection[J]. Acta Phys Sin, 2003, 52(9): 2190-2193.

[20] Lanz B, Vainshtein S, Kostamovaara J. High power gain-switched laser diode using a superfast GaAs avalanche transistor for pumping[J]. Appl Phys Lett, 2006, 89(8): 081122.

[21] Pataca D M, Gunning P, Rocha M L, et al.. Gain-switched DFB lasers[J]. Journal of Microwaves and Optoelectronics, 1997, 1(1): 46-63.

[22] 董帅. 用于光量子信息实验的直调窄脉冲激光源[D]. 北京: 清华大学, 2012: 19-30.

[23] Haibin Du, Yan Liang, Shengxiang Zhang, et al.. Practical high-speed light source for decoy-state quantum key distribution[J]. Chinese Optics Letters, 2014, 12(7): 072702.

[24] 周强. 一种真随机数产生方法以及装置: 中国, CN103942030A[P]. 2014-07-23.

[25] Tang Yanlin, Yin Hualei, Ma Xiongfeng, et al.. Source attack of decoy-state quantum key distribution using phase information[J]. Phys Rev A, 2013, 88(2): 022308.

[26] Hong C K, Ou Z Y, Mandel L. Measurement of subpicosecond time intervals between two photons by interference[J]. Phys Rev Lett, 1987, 59(18): 2044-2046.

[27] Zhou Qiang, Zhang Wei, Cheng Jierong, et al.. Properties of optical fiber based synchronous heralded single photon sources at 1.5 μm[J]. Physics Letters A, 2011, 375: 2274-2277.

[28] Zhou Qiang, Zhang Wei, Wang Pengxiang, et al.. Polarization entanglement generation at 1.5 μm based on walk-off effect due to fiber birefringence[J]. Optics Letters, 2012, 37(10): 1679-1681.

[29] Zhou Qiang, Zhang Wei, Tianzhu Niu, et al.. A polarization maintaining scheme for 1.5 μm polarization entangled photon pair generation in optical fibers[J]. The European Physical Journal D, 2013, 67: 202.

周强, 刘金璐, 谷远辉, 樊矾, 王云祥, 徐兵杰. 量子保密通信用增益开关半导体脉冲激光器[J]. 中国激光, 2016, 43(5): 0502005. Zhou Qiang, Liu Jinlu, Gu Yuanhui, Fan Fan, Wang Yunxiang, Xu Bingjie. Gain-Switched Semiconductor Pulsed Laser for Quantum Secure Communication[J]. Chinese Journal of Lasers, 2016, 43(5): 0502005.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!