Photonics Research, 2015, 3 (5): 05000279, Published Online: Jan. 6, 2016  

High-Q silica microdisk optical resonators with large wedge angles on a silicon chip Download: 608次

Author Affiliations
1 National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences,Nanjing University, Nanjing 210093, China
2 Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, USA
Abstract
We experimentally demonstrate high optical quality factor silica microdisk resonators on a silicon chip with large wedge angles by reactive ion etching. For 2-μm-thick microresonators, we have achieved wedge angles of 59°, 63°, 70°, and 79° with optical quality factors of 2.4 × 107, 8.1 × 106, 5.9 × 106, and 7.4 × 106, respectively, from ~80 μmdiameter microresonators in the 1550 nm wavelength band. Also, for 1-μm-thick microresonators, we have obtained an optical quality factor of 7.3 × 106 with a wedge angle of 74°.
References

[1] K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).

[2] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).

[3] A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711–713 (1999).

[4] F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, “The first decade of coupled resonator optical waveguides: bringing slow light to applications,” Laser Photon. Rev. 6, 74–96 (2012).

[5] A. Naweed, G. Farca, S. I. Shopova, and A. T. Rosenberger, “Induced transparency and absorption in coupled whisperinggallery microresonators,” Phys. Rev. A 71, 043804 (2005).

[6] K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupledresonator- induced transparency,” Phys. Rev. Lett. 98, 213904 (2007).

[7] C. Zheng, X. Jiang, S. Hua, L. Chang, G. Li, H. Fan, and M. Xiao, “Controllable optical analog to electromagnetically induced transparency in coupled high-Q microtoroid cavities,” Opt. Express 20, 18319–18325 (2012).

[8] A. Dousse, J. Suffczyn′ ski, A. Beveratos, O. Krebs, A. Lema tre, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).

[9] A. Majumdar, A. Rundquist, M. Bajcsy, V. D. Dasika, S. R. Bank, and J. Vu kovi , “Design and analysis of photonic crystal coupled cavity arrays for quantum simulation,” Phys. Rev. B 86, 195312 (2012).

[10] I. S. Grudinin, H. Lee, O. Painter, and K. J. Vahala, “Phonon laser action in a tunable two-level system,” Phys. Rev. Lett. 104, 083901 (2010).

[11] L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photonics 8, 524–529 (2014).

[12] B. Peng, S. K. zdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Paritytime- symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).

[13] M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13, 1515–1530 (2005).

[14] A. Biberman, M. J. Shaw, E. Timurdogan, J. B. Wright, and M. R. Watts, “Ultralow-loss silicon ring resonators,” Opt. Lett. 37, 4236–4238 (2012).

[15] Q. Li, A. A. Eftekhar, M. Sodagar, Z. Xia, A. H. Atabaki, and A. Adibi, “Vertical integration of high-Q silicon nitride microresonators into silicon-on-insulator platform,” Opt. Express 21, 18236–18248 (2013).

[16] D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).

[17] J.-B. Jager, V. Calvo, E. Delamadeleine, E. Hadji, P. Noé, T. Ricart, D. Bucci, and A. Morand, “High-Q silica microcavities on a chip: from microtoroid to microsphere,” Appl. Phys. Lett. 99, 181123 (2011).

[18] T. J. Kippenberg, J. Kalkman, A. Polman, and K. J. Vahala, “Demonstration of an erbium-doped microdisk laser on a silicon chip,” Phys. Rev. A 74, 051802 (2006).

[19] H. Lee, T. Chen, J. Li, K. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).

[20] C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee, K. Hennessy, H. Kim, and E. Hu, “Wavelength-and materialdependent absorption in GaAs and AlGaAs microcavities,” Appl. Phys. Lett. 90, 051108 (2007).

[21] L. Ding, C. Baker, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “High frequency GaAs nano-optomechanical disk resonator,” Phys. Rev. Lett. 105, 263903 (2010).

[22] P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, “Polymer micro-ring filters and modulators,” J. Lightwave Technol. 20, 1968–1975 (2002).

[23] T. Grossmann, M. Hauser, T. Beck, C. Gohn-Kreuz, M. Karl, H. Kalt, C. Vannahme, and T. Mappes, “High-Q conical polymeric microcavities,” Appl. Phys. Lett. 96, 013303 (2010).

[24] B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lon ar, “Diamond nonlinear photonics,” Nat. Photonics 8, 369–374 (2014).

[25] C. Schmidt, A. Chipouline, T. K sebier, E.-B. Kley, A. Tünnermann, T. Pertsch, V. Shuvayev, and L. I. Deych, “Observation of optical coupling in microdisk resonators,” Phys. Rev. A 80, 043841 (2009).

[26] C. Schmidt, A. Chipouline, T. K sebier, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Thermal nonlinear effects in hybrid silica/polymer microdisks,” Opt. Lett. 35, 3351–3353 (2010).

[27] X. Jiang, Q. Lin, J. Rosenberg, K. Vahala, and O. Painter, “High-Q double-disk microcavities for cavity optomechanics,” Opt. Express 17, 20911–20919 (2009).

[28] Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).

[29] M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whisperinggallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).

[30] T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Modal coupling in traveling-wave resonators,” Opt. Lett. 27, 1669–1671 (2002).

[31] T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerrnonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93, 083904 (2004).

[32] J. Li, H. Lee, K. Y. Yang, and K. J. Vahala, “Sideband spectroscopy and dispersion measurement in microcavities,” Opt. Express 20, 26337–26344 (2012).

[33] I. H. Agha, Y. Okawachi, and A. L. Gaeta, “Theoretical and experimental investigation of broadband cascaded four-wave mixing in high-Q microspheres,” Opt. Express 17, 16209– 16215 (2009).

[34] Y. K. Chembo and N. Yu, “Modal expansion approach to opticalfrequency- comb generation with monolithic whispering-gallerymode resonators,” Phys. Rev. A 82, 033801 (2010).

[35] T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6, 480–487 (2012).

Guanyu Li, Pei Liu, Xiaoshun Jiang, Chao Yang, Jiyang Ma, Hongya Wu, Min Xiao. High-Q silica microdisk optical resonators with large wedge angles on a silicon chip[J]. Photonics Research, 2015, 3(5): 05000279.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!