激光与光电子学进展, 2020, 57 (1): 010005, 网络出版: 2020-01-03   

超快激光加热技术传热理论研究进展 下载: 2105次

Research Progress on Heat Transfer Theory in Ultra-Fast Laser Heating Technology
作者单位
山东建筑大学热能工程学院, 山东 济南 250101
引用该论文

吕慧丽, 毛煜东, 于明志, 杨开敏, 刘芳, 王远成. 超快激光加热技术传热理论研究进展[J]. 激光与光电子学进展, 2020, 57(1): 010005.

Huili Lü, Yudong Mao, Mingzhi Yu, Kaimin Yang, Fang Liu, Yuancheng Wang. Research Progress on Heat Transfer Theory in Ultra-Fast Laser Heating Technology[J]. Laser & Optoelectronics Progress, 2020, 57(1): 010005.

参考文献

[1] 戴军, 杨莉, 张尧成, 等. AZ31镁合金和铝基复合材料的脉冲激光焊接[J]. 激光与光电子学进展, 2018, 55(5): 051403.

    Dai J, Yang L, Zhang Y C, et al. Pulsed laser welding of AZ31 magnesium alloy and aluminum matrix composites[J]. Laser & Optoelectronics Progress, 2018, 55(5): 051403.

[2] 周翔, 段军, 陈航, 等. 水辅助激光无重铸层钻孔Al2O3陶瓷实验研究[J]. 激光技术, 2018, 42(2): 271-275.

    Zhou X, Duan J, Chen H, et al. Experimental study about water-assisted laser drill on Al2O3 ceramics without recast layer[J]. Laser Technology, 2018, 42(2): 271-275.

[3] 程伟, 武美萍, 唐又红, 等. 42CrMo合金表面单道轨迹激光熔覆工艺研究[J]. 激光与光电子学进展, 2019, 56(4): 041402.

    Cheng W, Wu M P, Tang Y H, et al. Laser cladding process of 42CrMo surface with single-pass[J]. Laser & Optoelectronics Progress, 2019, 56(4): 041402.

[4] 马亚运, 韩绍坤, 翟宇, 等. 一种基于光纤阵列的激光照明方法[J]. 光学技术, 2018, 44(2): 201-205.

    Ma Y Y, Han S K, Zhai Y, et al. An illumination method based on fiber array[J]. Optical Technique, 2018, 44(2): 201-205.

[5] Li C H, Luan D C, Zhu Q H, et al. A universal theoretical model for thermal integration in materials during repetitive pulsed laser-based processing[J]. Optik, 2018, 171: 728-736.

[6] 高辽远, 周建忠, 孙奇, 等. 激光清洗铝合金漆层的数值模拟与表面形貌[J]. 中国激光, 2019, 46(5): 0502002.

    Gao L Y, Zhou J Z, Sun Q, et al. Numerical simulation and surface morphology of laser-cleaned aluminum alloy paint layer[J]. Chinese Journal of Lasers, 2019, 46(5): 0502002.

[7] 李阳龙, 吴凌远, 沈欢欢, 等. 基于光场调制的纳秒激光图案化石墨烯研究[J]. 强激光与粒子束, 2018, 30(12): 129001.

    Li Y L, Wu L Y, Shen H H, et al. Patterning of graphene by light field modulated nanosecond laser[J]. High Power Laser and Particle Beams, 2018, 30(12): 129001.

[8] 姚建华, 吴丽娟, 李波, 等. 超音速激光沉积技术: 研究现状及发展趋势[J]. 中国激光, 2019, 46(3): 0300001.

    Yao J H, Wu L J, Li B, et al. Research states and development tendency of supersonic laser deposition technology[J]. Chinese Journal of Lasers, 2019, 46(3): 0300001.

[9] Chen G B, Wang Y D, Zhang J J, et al. An analytical solution for two-dimensional modeling of repetitive long pulsed laser heating material[J]. International Journal of Heat and Mass Transfer, 2017, 104: 503-509.

[10] Chen G B, Gu X Y, Bi J. Numerical analysis of thermal effect in aluminum alloy by repetition frequency pulsed laser[J]. Optik, 2016, 127(20): 10115-10121.

[11] Yu P, Zeng Y. Characterization of laser-induced local heating in a substrate[J]. International Journal of Heat and Mass Transfer, 2017, 106: 989-996.

[12] Tisza L. Transport phenomena in helium II[J]. Nature, 1938, 141(3577): 913.

[13] Landau L. Theory of the superfluidity of helium II[J]. Physical Review, 1941, 60(4): 356-358.

[14] Peshkov V. Second sound in helium II[J]. Jorunal of Physics, 1944, 8: 381-382.

[15] Jou D, Casas-Vazquez J, Lebon G. Extended irreversible thermodynamics[J]. Reports on Progress in Physics, 1988, 51(8): 1105-1179.

[16] Cattaneo C. A form of heat conduction equation which eliminates the paradox of instantaneous propagation[J]. Compte Rendus, 1958, 247(4): 431-433.

[17] Tzou D Y. The generalized lagging response in small-scale and high-rate heating[J]. International Journal of Heat and Mass Transfer, 1995, 38(17): 3231-3240.

[18] Bai C, Lavine A S. On hyperbolic heat conduction and the second law of thermodynamics[J]. Journal of Heat Transfer, 1995, 117(2): 256-263.

[19] Coleman B D, Fabrizio M, Owen D R. On the thermodynamics of second sound in dielectric crystals[J]. Archive for Rational Mechanics and Analysis, 1982, 80(2): 135-158.

[20] Coleman BD, FabrizioM, Owen DR. Thermodynamics and the constitutive relations for second sound in crystals[M] ∥Grioli G. Thermodynamics and constitutive equations. Lecture notes in physics. Berlin, Heidelberg: Springer, 1985, 228: 20- 43.

[21] Lin C K, Hwang C C, Chuag Y P. The unsteady solutions of a unified heat conduction equation[J]. International Journal of Heat and Mass Transfer, 1997, 40(7): 1716-1719.

[22] Duhamel P. Application of a new finite integral transform method to the wave model of conduction[J]. International Journal of Heat and Mass Transfer, 2004, 47(3): 573-588.

[23] Wang L Q. Solution structure of hyperbolic heat-conduction equation[J]. International Journal of Heat and Mass Transfer, 2000, 43(3): 365-373.

[24] Ordóñez-Miranda J. Alvarado-Gil J J. Thermal wave oscillations and thermal relaxation time determination in a hyperbolic heat transport model[J]. International Journal of Thermal Sciences, 2009, 48(11): 2053-2062.

[25] Yilbas B S, Pakdemirli M. Analytical solution for temperature field in electron and lattice sub-systems during heating of solid film[J]. Physica B: Condensed Matter, 2006, 382(1/2): 213-219.

[26] Anisimov S I, Kapeliovich B L, Perelman T L. Electron emission from metal surfaces under the action of ultrashort laser pulses[J]. Soviet Physics JETP, 1974, 39(2): 375-377.

[27] Fujimoto J G, Liu J M, Ippen E P, et al. Femtosecond laser interaction with metallic tungsten and nonequilibrium electron and lattice temperatures[J]. Physical Review Letters, 1984, 53(19): 1837-1840.

[28] Brorson S D, Fujimoto J G, Ippen E P. Femtosecond electronic heat-transport dynamics in thin gold films[J]. Physical Review Letters, 1987, 59(17): 1962-1965.

[29] Qiu T Q, Tien C L. Short-pulse laser heating on metals[J]. International Journal of Heat and Mass Transfer, 1992, 35(3): 719-726.

[30] Qiu T Q, Tien C L. Heat transfer mechanisms during short-pulse laser heating of metals[J]. Journal of Heat Transfer, 1993, 115(4): 835-841.

[31] Özişik M N, Tzou D Y. On the wave theory in heat conduction[J]. Journal of Heat Transfer, 1994, 116(3): 526-535.

[32] Al-Nimr M A, Kiwan S. Effect of thermal losses on the microscopic two-step heat conduction model[J]. International Journal of Heat and Mass Transfer, 2001, 44(5): 1013-1018.

[33] 宋亚勤, 王秋军, 张元冲. 双曲两步模型下金属薄膜的热行为[J]. 微纳电子技术, 2003, 40(1): 15-18, 29.

    Song Y Q, Wang Q J, Zhang Y C. Thermal behavior of thin metal film in the hyperbolic two-step model[J]. Micronanoelectronic Technology, 2003, 40(1): 15-18, 29.

[34] 宋亚勤, 王秋军, 张元冲. 对流热损失对双曲两步热传导的影响[J]. 微纳电子技术, 2003, 40(5): 17-22.

    Song Y Q, Wang Q J, Zhang Y C. Effect of convective thermal losses on the hyperbolic two-step heat conduction[J]. Micronanoelectronic Technology, 2003, 40(5): 17-22.

[35] 王秋军, 徐红玉, 宋亚勤, 等. 微尺度热传导理论及金属薄膜的短脉冲激光加热[J]. 微纳电子技术, 2003, 40(11): 18-23.

    Wang Q J, Xu H Y, Song Y Q, et al. Theory of microscale heat transfer and short-pulse laser heating of thin metal films[J]. Micronanoelectronic Technology, 2003, 40(11): 18-23.

[36] 徐红玉, 张元冲, 宋亚勤, 等. 脉冲激光加热薄膜微尺度热传递研究进展[J]. 物理学进展, 2004, 24(2): 152-162.

    Xu H Y, Zhang Y C, Song Y Q, et al. Research progress in pulse laser heating thin film microscale heat transfer[J]. Progress in Physics, 2004, 24(2): 152-162.

[37] Dai W Z, Han F, Sun Z Z. Accurate numerical method for solving dual-phase-lagging equation with temperature jump boundary condition in nano heat conduction[J]. International Journal of Heat and Mass Transfer, 2013, 64: 966-975.

[38] Mukherjee A, Lahiri A, Mishra S C. Analyses of dual-phase lag heat conduction in 1-D cylindrical and spherical geometry-an application of the lattice Boltzmann method[J]. International Journal of Heat and Mass Transfer, 2016, 96: 627-642.

[39] 毛煜东. 微纳尺度传热问题的理论分析和格子Boltzmann数值模拟[D]. 济南: 山东大学, 2015.

    Mao YD. Theory analysis and lattice Boltzmann numerical simulation of micro-/nano-scale heat transfer[D]. Jinan: Shandong University, 2015.

[40] Zhang M K, Cao B Y, Guo Y C. Numerical studies on damping of thermal waves[J]. International Journal of Thermal Science, 2014, 84: 9-20.

[41] Tang D W, Araki N. Non-Fourier heat condution behavior in finite mediums under pulse surface heating[J]. Materials Science and Engineering: A, 2000, 292(2): 173-178.

[42] Larson B C, Tischler J Z, Mills D M. Nanosecond resolution time-resolved X-ray study of silicon during pulsed-laser irradiation[J]. Journal of Materials Research, 1986, 1(1): 144-154.

[43] Alvarez F X, Jou D. Size and frequency dependence of effective thermal conductivity in nanosystems[J]. Journal of Applied Physics, 2008, 103(9): 094321.

[44] Jou D, Cimmelli V A, Sellitto A. Nonequilibrium temperatures and second-sound propagation along nanowires and thin layers[J]. Physics Letters A, 2009, 373(47): 4386-4392.

[45] Xu M T. Thermodynamic basis of dual-phase-lagging heat conduction[J]. Journal of Heat Transfer, 2011, 133(4): 041401.

[46] Klitsner T. VanCleve J E, Fischer H E, et al. Phonon radiative heat transfer and surface scattering[J]. Physical Review B, 1988, 38(11): 7576-7594.

[47] Escobar R A, Ghai S S, Jhon M S, et al. Multi-length and time scale thermal transport using the lattice Boltzmann method with application to electronics cooling[J]. International Journal of Heat and Mass Transfer, 2006, 49(1/2): 97-107.

[48] 华钰超, 曹炳阳, 过增元. 弹道扩散导热的热质模型[J]. 科学通报, 2015, 60(24): 2344-2348.

    Hua Y C, Cao B Y, Guo Z Y. Ballistic-diffusive heat conduction by thermo mass theory[J]. Chinese Science Bulletin, 2015, 60(24): 2344-2348.

[49] 张珂, 李凌, 任松涛, 等. 纳米薄膜激光照射过程的格子波尔兹曼方法模拟[J]. 光学学报, 2016, 36(10): 1014001.

    Zhang K, Li L, Ren S T, et al. Simulation of lattice Boltzmann method for nano-film laser irradiation process[J]. Acta Optica Sinica, 2016, 36(10): 1014001.

[50] Mao Y D, Xu M T. Lattice Boltzmann numerical analysis of heat transfer in nano-scale silicon films induced by ultra-fast laser heating[J]. International Journal of Thermal Sciences, 2015, 89: 210-221.

[51] Alvarez F X, Jou D. Memory and nonlocal effects in heat transport: from diffusive to ballistic regimes[J]. Applied Physics Letters, 2007, 90(8): 083109.

[52] Amon C H, Ghai S S, Kim W T, et al. Modeling of nanoscale transport phenomena: application to information technology[J]. Physica A: Statistical Mechanics and its Applications, 2006, 362(1): 36-41.

[53] Liu W, Asheghi M. Phonon-boundary scattering in ultrathin single-crystal silicon layers[J]. Applied Physics Letters, 2004, 84(19): 3819-3821.

[54] ZhangH, Lü ZC, Tian LL, et al. Thermal conductivity measurements of ultra-thin single crystal silicon films using improved structure[C]∥2006 8th International Conference on Solid-State and Integrated Circuit Technology Proceedings, October 23-26, 2006, Shanghai, China. New York: IEEE, 2006: 9408808.

[55] Peterson R B. Direct simulation of phonon-mediated heat transfer in a Debye crystal[J]. Journal of Heat Transfer, 1994, 116(4): 815-822.

[56] 仲金波, 李凌. 超短激光照射下颗粒的散射效应[J]. 强激光与粒子束, 2015, 27(8): 089004.

    Zhong J B, Li L. Scattering effect of particles irradiated by ultrashort laser[J]. High Power Laser and Particle Beams, 2015, 27(8): 089004.

[57] Hua Y C, Cao B Y. Phonon ballistic-diffusive heat conduction in silicon nanofilms by Monte Carlo simulations[J]. International Journal of Heat and Mass Transfer, 2014, 78: 755-759.

[58] Hua Y C, Cao B Y. Cross-plane heat conduction in nanoporous silicon thin films by phonon Boltzmann transport equation and Monte Carlo simulations[J]. Applied Thermal Engineering, 2017, 111: 1401-1408.

[59] Hua Y C, Cao B Y. An efficient two-step Monte Carlo method for heat conduction in nanostructures[J]. Journal of Computational Physics, 2017, 342: 253-266.

[60] Li H L, Hua Y C, Cao B Y. A hybrid phonon Monte Carlo-diffusion method for ballistic-diffusive heat conduction in nano- and micro- structures[J]. International Journal of Heat and Mass Transfer, 2018, 127: 1014-1022.

[61] Maruyama S. Molecular dynamics method for microscale heat transfer[J]. Advances in Numerical Heat Transfer, 2000, 2(6): 189-226.

[62] Elliott J A. Novel approaches to multiscale modelling in materials science[J]. International Materials Reviews, 2011, 56(4): 207-225.

[63] Wang LM, Zeng XW. Molecular dynamics simulations of femtosecond laser ablation of silicon[C]∥Proceedings of 2011 International Conference on Electronics and Optoelectronics, July 29-31, 2011, Dalian, Liaoning, China. New York: IEEE, 2011: 415- 418.

[64] Li B, Wong C H. Molecular dynamics studies of lubricant depletion under moving laser heating: effects of laser power and film thickness[J]. Tribology International, 2015, 92: 38-46.

[65] Seo Y W, Rosenkranz A, Talke F E. Molecular dynamics study of lubricant depletion by pulsed laser heating[J]. Applied Surface Science, 2018, 440: 73-83.

[66] 吴寒, 张楠, 何淼, 等. 氩、铝原子相互作用势的计算及其在飞秒激光烧蚀分子动力学模拟中的应用[J]. 中国激光, 2016, 43(8): 0802004.

    Wu H, Zhang N, He M, et al. Calculation of argon-aluminum interatomic potential and its application in molecular dynamics simulation of femtosecond laser ablation[J]. Chinese Journal of Lasers, 2016, 43(8): 0802004.

[67] 陈亚洲, 周留成, 何卫锋, 等. 冲击加载下纯钛微观塑性变形的分子动力学模拟[J]. 中国激光, 2016, 43(8): 0802014.

    Chen Y Z, Zhou L C, He W F, et al. Molecular dynamics simulation of plastic deformation of pure titanium under shock loading[J]. Chinese Journal of Lasers, 2016, 43(8): 0802014.

[68] 王志龙, 罗开玉, 刘月, 等. 超高应变率力学效应下多晶铜的微观塑性变形分子动力学模拟[J]. 中国激光, 2015, 42(7): 0703005.

    Wang Z L, Luo K Y, Liu Y, et al. Molecular dynamics simulation of plastic deformation of polycrystalline Cu under mechanical effect with ultrahigh strain rate[J]. Chinese Journal of Lasers, 2015, 42(7): 0703005.

[69] 徐高峰, 周建忠, 孟宪凯, 等. 深冷环境下激光冲击波在单晶钛中的传播及位错扩展特性[J]. 中国激光, 2017, 44(6): 0602005.

    Xu G F, Zhou J Z, Meng X K, et al. Propagation and dislocation development properties of laser shock waves in monocrystalline titanium under cryogenic environment[J]. Chinese Journal of Lasers, 2017, 44(6): 0602005.

[70] 关阳, 李凌, 牛泽伟. 考虑非傅立叶效应的固液相变分子动力学模拟[J]. 原子与分子物理学报, 2019, 36(2): 312-318.

    Guan Y, Li L, Niu Z W. Molecular dynamics simulation of solid-liquid phase change considering non-Fourier effect[J]. Journal of Atomic and Molecular Physics, 2019, 36(2): 312-318.

吕慧丽, 毛煜东, 于明志, 杨开敏, 刘芳, 王远成. 超快激光加热技术传热理论研究进展[J]. 激光与光电子学进展, 2020, 57(1): 010005. Huili Lü, Yudong Mao, Mingzhi Yu, Kaimin Yang, Fang Liu, Yuancheng Wang. Research Progress on Heat Transfer Theory in Ultra-Fast Laser Heating Technology[J]. Laser & Optoelectronics Progress, 2020, 57(1): 010005.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!