光学学报, 2017, 37 (2): 0207002, 网络出版: 2017-02-13   

多普勒差分干涉光谱仪大气风速反演过程中窗函数优化

Window Function Optimization in Atmospheric Wind Velocity Retrieval with Doppler Difference Interference Spectrometer
作者单位
1 中国科学院西安光学精密机械研究所光谱成像技术重点实验室, 陕西 西安 710119
2 中国科学院大学, 北京 100049
摘要
多普勒差分干涉光谱仪是傅里叶变换型光谱仪,在大气风速反演过程中,偶延拓的反演光谱无法直接解出目标谱线的相位,而且在实际测量中反演光谱中含有的杂散光谱线、噪声等,使得复干涉图相位发生变化,最终导致反演风速值的偏差。所以,在对实际噪声环境下测得数据的处理过程中,获取反演光谱相位信息时需要对目标谱线进行提取。针对不同信噪比的干涉图,利用蒙特卡罗方法对不同线宽的不同窗函数的优化反演结果进行分析。结果表明:对于信噪比高于26.5 dB的干涉图,线宽为4~5倍光谱分辨率的高斯窗函数是最优的窗函数优化方式;对于信噪比低于26.5 dB的干涉图,线宽为7~12倍光谱分辨率的矩形窗函数的反演风速值更精确,是最优的窗函数优化方式,可以复原相位信息,反演出大气风速的近似值。
Abstract
Doppler difference interference spectrometer is a kind of Fourier transform spectrometer. In the process of atmospheric wind velocity retrieval, even-prolongated recovered spectrum cannot work out the phase information of the target spectral line directly. Meanwhile, there are stray spectral lines and noises in the recovered spectrum, which make the phase of the interferogram changed and the retrieved wind velocity deviated. Therefore, isolation of the target spectral line is necessary in the process of getting the phase information of the recovered spectrum in actual noisy environment. For interferograms with different signal noise ratios the retrieved wind velocities (SNR) optimized by different window functions with different line widths are analyzed by Monte-Carlo method. The results indicate that the Gaussian window function with line width equaling 4 to 5 times of the spectral resolution provides the best performance if the SNR of the measured interferogram is higher than 26.5 dB, and rectangular window function with line width equaling 7 to 12 times-of the spectral resolution provides the best performance if the SNR of the measured interferogram is lower than 26.5 dB. The phase information and the approximative atmospheric wind velocity can be retrieved.
参考文献

[1] Englert C R, Harlander J M, Babcock D D, et al. Doppler asymmetric spatial heterodyne spectroscopy (DASH): an innovative concept for measuring winds in planetary atmospheres[C]. SPIE, 2006, 6303: 63030T.

[2] Englert C R, Babcock D D, Harlander J M. Doppler asymmetric spatial heterodyne spectroscopy (DASH): concept and experimental demonstration[J]. Applied Optics, 2007, 46(29): 7297-7307.

[3] 冯玉涛, 白清兰, 王咏梅, 等. 空间外差光谱仪视场展宽棱镜设计理论与方法[J]. 光学学报, 2012, 32(10): 1030001.

    Feng Yutao, Bai Qinglan, Wang Yongmei, et al. Theory and method for designing field-widened prism of spatial heterodyne spectrometer[J]. Acta Optica Sinica, 2012, 32(10): 1030001.

[4] 费小云, 冯玉涛, 白清兰, 等. 双视场准共路多普勒外差干涉仪光学系统设计[J]. 光学学报, 2015, 35(4): 0422003.

    Fei Xiaoyun, Feng Yutao, Bai Qinglan, et al. Optical system design of a co-path Doppler asymmetric spatial heterodyne interferometer with two fields of view[J]. Acta Optica Sinica, 2015, 35(4): 0422003.

[5] Englert C R, Harlander J M, Emmert J T, et al. Initial ground-based thermospheric wind measurements using Doppler asymmetric spatial heterodyne spectroscopy (DASH)[J]. Optics Express, 2010, 18(26): 27416-27430.

[6] Harlander J M, Englert C R, Babcock D D, et al. Design and laboratory tests of a Doppler asymmetric spatial heterodyne (DASH) interferometer for upper atmospheric wind and temperature observations[J]. Optics Express, 2010, 18(25): 26430-26440.

[7] Englert C R, Harlander J M, Brown C M, et al. Coincident thermospheric wind measurements using ground-based Doppler asymmetric spatial heterodyne (DASH) and Fabry-Perot interferometer (FPI) instruments[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2012, 86: 92-98.

[8] Marr K D, Englert C R, Harlander J M. Flat-fields in DASH interferometry[J]. Optics Express, 2012, 20(9): 9535-9544.

[9] Marr K D, Englert C R, Harlander J M, et al. Thermal sensitivity of DASH interferometers: the role of thermal effects during the calibration of an Echelle DASH interferometer[J]. Applied Optics, 2013, 52(33): 8082-8088.

[10] 叶 松, 熊 伟, 王新强, 等. 基于频域分析的空间外差干涉图校正方法研究[J]. 光学学报, 2013, 33(5): 0530001.

    Ye Song, Xiong Wei, Wang Xinqiang, et al. Correction of spatial heterodyne interferogram based on frequency domain analysis[J]. Acta Optica Sinica, 2013, 33(5): 0530001.

[11] 景娟娟, 相里斌, 吕群波, 等. 干涉光谱数据处理技术研究进展[J]. 光谱学与光谱分析, 2011, 31(4): 865-870.

    Jing Juanjuan, Xiangli Bin, Lü Qunbo, et al. Advance in interferogram data processing technique[J]. Spectroscopy and Spectral Analysis, 2011, 31(4): 865-870.

[12] 黄 旻, 相里斌, 吕群波, 等. 空间调制型干涉光谱成像仪数据处理方法[J]. 光谱学与光谱分析, 2010, 30(3): 855-858.

    Huang Min, Xiangli Bin, Lü Qunbo, et al. Research on spatially modulated Fourier transform imaging spectrometer data processing method[J]. Spectroscopy and Spectral Analysis, 2011, 30(3): 855-858.

[13] Perkins C P. Spatial heterodyne spectroscopy: modeling and interferogram processing[D]. Massachusetts: Merrimack College, 2011.

陈洁婧, 冯玉涛, 胡炳樑, 李娟, 孙剑, 郝雄波, 白清兰. 多普勒差分干涉光谱仪大气风速反演过程中窗函数优化[J]. 光学学报, 2017, 37(2): 0207002. Chen Jiejing, Feng Yutao, Hu Bingliang, Li Juan, Sun Jian, Hao Xiongbo, Bai Qinglan. Window Function Optimization in Atmospheric Wind Velocity Retrieval with Doppler Difference Interference Spectrometer[J]. Acta Optica Sinica, 2017, 37(2): 0207002.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!