应用激光, 2013, 33 (5): 487, 网络出版: 2013-12-04   

激光熔凝过程中金属熔池光谱检测

Measurement of Spectrum Distribution of Metal Molten Pool in Laser Melting
作者单位
天津工业大学激光技术研究所, 天津 300160
摘要
为研究激光熔凝中熔池的光谱辐射特性, 采用光栅光谱检测技术, 检测了激光定点辐照和不同速度下45钢熔池光谱, 得到不同功率、不同速度的光谱分布。结果表明: 功率500 W激光定点辐照下, 在波长532 nm处熔池光谱相对强度最高为1 936, 激光继续辐照时光谱相对强度不再增加, 达到准稳态状态; 激光功率1 000 W时, 532 nm波长处熔池光谱相对强度最高3 010, 有部分光谱曲线饱和。激光熔凝熔池光谱波动与熔凝表面质量存在一定的关系, 激光功率950 W, 扫描速度1 mm/s时, 熔池光谱相对强度波动较大, 在565 nm处光谱线波动500, 熔凝质量较差; 扫描速度4 mm/s时, 可得到较平整的熔凝层, 光谱谱线最大波动在220~310。对定点辐照下熔池光谱中的发射谱线标定表明, 线光谱主要由FeI辐射。该检测结果可用于激光熔凝工艺优化, 实现激光熔凝的在线监控和反馈控制。
Abstract
Based on grating spectrum detection technology, spectrum of molten pool of 45 steel was measured to study the spectral radiation characteristics. Laser targeted irradiation and different scanning speeds were carried out; Spectral distribution at different power and different speed was measured. It is shown at wavelength 532 nm max relative intensity of spectrum of molten pool was 1 936 when laser power was 500 W and laser irradiation targeted. It achieved quasi-steady and Spectrum relative intensity was not increased. Max relative intensity of spectrum of molten pool was 3 010 at wavelength 532 nm when laser power was 1 000 W, and part of the spectrum curve was saturated. There was a certain relationship between the quality of laser melting layers and spectrum fluctuation of molten pool. Laser power 950 W and scanning speed 1 mm/s, spectrum fluctuation of molten pool was bigger; the spectral relative intensity fluctuated value was 500 at wavelength 565 nm. When laser scanning speed was 4mm/s, laser solidified layer was flat. Calibration of molten pool spectrum shows that most of line spectrum was Fe I radiation. Laser melting parameters were optimized by the measurement results, and monitoring on line and closed loop control could be achieved.
参考文献

[1] 陈静, 谭华, 杨海欧, 等.激光快速成形过程中熔池形态的演化[J].中国激光, 2007, 34(3): 442-446.

    CHEN JING, TAN HUA, YANG HAIOU, et al.Evolution of Molten Pool Shape in the Process of Laser Rapid Forming[J]. Chinese Journal of Lasers, 2007, 34(3): 442-446.

[2] HALDER A, PAUL M C, SHAHABUDDIN N S, et al.Wideband Spectrum-Sliced ASE Source Operating at 1 900 nm Region Based on a Double-Clad Ytterbium-Sensitized Thulium-Doped Fiber [J]. Ieee Photonics Journal, 2012, 4(1): 14-18.

[3] PABLO COLODRON, JOSE FARIFA, JUAN J RODRIGUEZ-ANDINAL, et al.Performance Improvement of a Laser Cladding System through FPGA-Based Control[C]: Annual Conference of IEEE Industrial Electronics Melbourne, November 7-10, 2011. Melbourne, 2011: 2814-2819.

[4] 洪蕾, 胡肇炜, 马保亮.激光熔覆熔凝过程等离子体光信号的监测[J].中国激光, 2011, 38(2): 0203006.

    HONG LEI, HU ZHAOWEI, MA BAOLIANG.Monitoring Plasma Light in Laser Cladding and Melting[J]. Chinese Journal of Lasers, 2011, 38(2): 0203006.

[5] 杨洗陈.激光熔池中物理过程研究[J].天津工业大学学报, 2002, 21(4): 1-7.

    YANG XICHEN.Research on physical transfer process in a laser melting pool[J].Journal of Tianjin Polytechnic University, 2002, 21(4): 1-7.

[6] 席明哲, 虞钢. 连续移动三维瞬态激光熔池温度场数值模拟[J].中国激光, 2004, 31(12): 1527-1532.

    XI MINGZHE, YU GANG.Numerical Simulation for the Transient Temperature Field of 3D Moving Laser Molten Pool[J].Chinese Journal of Lasers, 2004, 31(12): 1527-1532.

[7] 陈静, 张凤英, 谭华, 等.激光多层熔覆沉积预混合Ti-xAl-yV合金粉末在熔池中的熔化与偏析行为[J].中国激光, 2010, 37(8): 2154-2159.

    CHEN JING, ZHANG FENGYING, TAN HUA, et al.Alloying Mechanics in Moving Melt Pool during Laser Solid Forming from Blended Elemental Powders[J].Chinese Journal of Lasers, 2010, 37(8): 2154-2159.

[8] 雷剑波, 杨洗陈, 陈娟, 等.激光熔覆熔池表面温度场分布的检测[J].中国激光, 2008, 35(10): 1605-1608.

    LEI JIANBO, YANG XICHEN, CHEN JUAN, et al.Measurement of Surface Temperature Field Distribution in Molten Pool of Laser Cladding[J].Chinese Journal of Lasers, 2008, 35(10): 1605-1608.

[9] 段晓峰, 汪岳峰, 牛燕雄, 等.激光辐照光学材料热力效应的解析计算和损伤评估[J].中国激光, 2004, 31(12): 1455-1459.

    DUAN XIAOFENG, WANG YYUEFENG, NIU YANXIONG, et al.Analytic Calculation and Evaluation of Thermal and Mechanical Damage in Optical Materials Induced by Laser[J]. Chinese Journal of Lasers, 2004, 31(12): 1455-1459.

[10] 曹震, 杨洗陈, 张海明.基于数字信号处理器的图像处理系统在激光熔池温度场检测中的应用[J].中国激光, 2009, 36(4): 1016-1019.

    CAO ZHEN, YANG XICHEN, ZHANG HAIMING.Application of Image Processing System Based on Digital Signal Processor to Temperature Field Measurement in Laser Molten Pool[J].Chinese Journal of Lasers, 2009, 36(4): 1016-1019.

张传鹏, 雷剑波, 方艳, 王云山. 激光熔凝过程中金属熔池光谱检测[J]. 应用激光, 2013, 33(5): 487. Zhang Chuanpeng, Lei Jianbo, Fang Yan, Wang Yunshan. Measurement of Spectrum Distribution of Metal Molten Pool in Laser Melting[J]. APPLIED LASER, 2013, 33(5): 487.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!