激光与光电子学进展, 2017, 54 (10): 100101, 网络出版: 2017-10-09   

应用于海洋监测的水下变焦镜头设计

Design of Underwater Zoom Lens for Marine Monitoring
马海宽 1,2,*曹煊 1,2褚东志 1,2吴宁 1,2马然 1,2张述伟 1,2史倩 1,2
作者单位
1 山东省海洋环境监测重点实验室, 山东 青岛 266100
2 山东省科学院海洋仪器仪表研究所, 山东 青岛 266100
摘要
设计了大相对孔径的三档变焦光学系统来监控海洋生态监测仪器的工作状态。该系统的设计通过Zemax软件实现, 总长度为200 mm, 系统采用6.4 mm×4.8 mm的CCD感光板, 三档变焦焦距分别为8, 14, 28 mm, 变焦过程中相对孔径为1/1.4, 短焦时最大视场角为52°。最大视场角下, 当奈奎斯特频率为42 lp/mm 时, 系统的0视场的调制传递函数(MTF)值为0.8, 0.707视场的平均MTF值为0.7, 1视场的平均MTF值达0.6; 10 μm范围内, 几何包围能量均在90%; 畸变控制在合理的范围。该系统变焦比高、结构简单、相对孔径大, 适用于海水中海洋生态监测仪器的监控, 能够及时地反馈海洋生态监测仪器的工作状态信息, 大大降低了海洋生态监测仪器的维护成本。
Abstract
In order to monitor the working status of marine ecological monitoring instruments, a three-gear zoom optical system with large relative aperture is designed. This system is designed with Zemax software and its total length is 200 mm. The system uses a 6.4 mm×4.8 mm CCD camera, and the three-gear zoom focal lengths are 8, 14, and 28 mm, respectively. The relative aperture remains at 1/1.4 during zoom process. The maximum field of view is 52° with short focus. At maximum field angle, when the Nyquist frequency is 42 lp/mm, the modulation transfer function (MTF) of the system at 0 field of view is 0.8, the average MTF is 0.7 at 0.707 field of view, and the average MTF value at 1 field of view reaches 0.6. In 10 μm range, the diffraction encircled energy is 90%, and distortion control is in a reasonable range. The system has high zoom ratio, simple structure and large relative aperture. It is suitable for monitoring the marine ecological monitoring instruments and can timely feedback their working status information. Therefore it greatly reduces the maintenance cost of marine ecological monitoring equipment.
参考文献

[1] 莱金, 周海宪, 程云芳. 光学系统设计[M]. 北京: 机械工业出版社, 2009.

    Lai Jin, Zhou Haixian, Cheng Yunfang. Optical system decign[M]. Beijing: China Machine Press, 2009.

[2] 谢正茂, 董晓娜, 陈良益, 等. 大视场大相对孔径水下专用摄影物镜的设计[J]. 光子学报, 2009, 38(4): 891-895.

    Xie Zhengmao, Dong Xiaona, Chen Liangyi, et al. Design for special underwater photography objective lens with wide angle and large relative aperture[J]. Acta Photonica Sinica, 2009, 38(4): 891-895.

[3] 孙传东, 李驰. 水下成像镜头的光学设计[J]. 光学 精密工程, 1998, 6(5): 5-11.

    Sun Chuandong, Li Chi. Optical design of the lens for underwater imaging system[J]. Optics and Precision Engineering, 1998, 6(5): 5-11.

[4] Laudo J S, Wurm K, Dodson C. Liquid-filled underwater camera lens system[C]. SPIE, 1998, 3482: 698-702.

[5] 卢卫涛, 何俊华, 闫亚东. 中等视场大相对孔径水下两档变焦光学系统[J]. 科学技术与工程, 2011, 11(16): 3675-3678.

    Lu Weitao, He Junhua, Yan Yadong. Underwater switch-zoom optical system with middle angle and large relative aperture[J]. Science Technology and Engineering, 2011, 11(16): 3675-3678.

[6] 谢正茂, 董晓娜, 何俊华. 水下微光摄影物镜的设计和研究[J]. 应用光学, 2009, 30(1): 6-10.

    Xie Zhengmao, Dong Xiaona, He Junhua. Design of underwater low light photographic objective[J]. Journal of Applied Optics, 2009, 30(1): 6-10.

[7] 翟学锋, 董晓娜, 王国富, 等. 水下变焦镜头的设计[J]. 应用光学, 2007, 28(4): 416-420.

    Zhai Xuefeng, Dong Xiaona, Wang Guofu, et al. Design of underwater zoom lens[J]. Journal of Applied Optics, 2007, 28(4): 416-420.

[8] 翟聪聪, 韩雪云, 彭玉峰, 等. 海水中不同盐分水溶液对光的透射特性研究[J]. 激光与光电子学进展, 2015, 52(1): 010101.

    Zhai Congcong, Han Xueyun, Peng Yufeng, et al. Research on light transmission characteristics of some inorganic salts in seawater[J]. Laser & Optoelectronics Progress, 2015, 52(1): 010101.

[9] 杨顶田, 曹文熙, 杨跃中, 等. 珠江口水体的光学特征及分析[J]. 生态科学, 2004, 23(1): 1-4.

    Yang Dingtian, Cao Wenxi, Yang Yuezhong, et al. Optical characteristics of water in the Pearl River mouth[J]. Ecological Science, 2004, 23(1): 1-4.

[10] Hickman G D, Harding J M, Carnes M, et al. Aircraft laser sensing of sound velocity in water: Brillouin scattering[J]. Remote Sensing of Environment, 1990, 36(3): 165-178.

[11] 赵连成, 毛志华, 陶邦一, 等. 水下高光谱衰减测量的不确定度分析[J]. 光学学报, 2015, 35(4): 0401004.

    Zhao Liancheng, Mao Zhihua, Tao Bangyi, et al. Analysis of uncertainties associated to underwater hyperspectral attenuation measurements[J]. Acta Optica Sinica, 2015, 35(4): 0401004.

[12] Pegau W S, Gray D, Zaneveld J R. Absorption and attenuation of visible and near-infrared light in water: dependence on temperature and salinity[J]. Applied Optics, 1997, 36(24): 6035-6046.

[13] Dosshammel S M, Zeisse C R, Barrios A E, et al. Low-altitude infrared propagation in a coastal zone: refraction and scattering[J]. Applied Optics, 2002, 41(18): 3706-3724.

[14] 张辉. 水的光学特性对水下光学成像质量影响的分析[J]. 电子测试, 2013(20): 261-262.

    Zhang Hui. Analysis of optical properties of water on the influence of optical imaging quality under water[J]. Electronic Test, 2013(20): 261-262.

[15] 卞殷旭, 王恒, 郭添翼, 等. 超短投影距的投影物镜设计[J]. 光学学报, 2015, 35(12): 1222002.

    Bian Yinxu, Wang Heng, Guo Tianyi, et al. Design of ultra-short throw ratio projection lens[J]. Acta Optica Sinica, 2015, 35(12): 1222002.

[16] 徐秋云, 徐晨, 李博, 等. 大口径批量化离轴非球面镜的检测光路设计[J]. 光学学报, 2015, 35(10): 1012005.

    Xu Qiuyun, Xu Chen, Li Bo, et al. Optical testing design for plenty of large off-axis aspherical mirrors[J]. Acta Optica Sinica, 2015, 35(10): 1012005.

[17] 周向东, 白剑. Q-type非球面小畸变全景环带光学系统设计[J]. 光学学报, 2015, 35(7): 0722003.

    Zhou Xiangdong, Bai Jian. Small distortion panoramic annular lens design with Q-type aspheres[J]. Acta Optica Sinica, 2015, 35(7): 0722003.

马海宽, 曹煊, 褚东志, 吴宁, 马然, 张述伟, 史倩. 应用于海洋监测的水下变焦镜头设计[J]. 激光与光电子学进展, 2017, 54(10): 100101. Ma Haikuan, Cao Xuan, Chu Dongzhi, Wu Ning, Ma Ran, Zhang Shuwei, Shi Qian. Design of Underwater Zoom Lens for Marine Monitoring[J]. Laser & Optoelectronics Progress, 2017, 54(10): 100101.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!