光谱学与光谱分析, 2011, 31 (4): 942, 网络出版: 2011-05-30  

麦秆添加大量CaO热解的TG-FTIR实验研究

TG-FTIR Study on Pyrolysis of Wheat-Straw with Abundant CaO Additives
作者单位
浙江大学热能工程研究所, 能源清洁利用国家重点实验室, 浙江 杭州 310027
摘要
利用热重-傅里叶变换红外光谱联用方法研究添加CaO对麦秆热解过程和挥发份析出特性的影响。 热重和红外光谱分析均表明添加CaO后麦秆热解呈现两个明显的失重和挥发份析出阶段, 而纯麦秆热解则只有一个。 CaO在第一阶段不但能够吸收CO2, 而且能够降低甲苯、 苯酚和蚁酸等焦油类物质的产生, 使得该阶段失重率和最大失重速率随CaO添加量增加而减小。 CaCO3的煅烧分解是添加CaO麦秆热解第二阶段产生的原因, 该阶段失重率和最大失重速率随CaO添加量增加而增大。 研究结果表明, 在采用生物质为原料的零排放系统中添加CaO有利于捕获CO2和减少焦油物质的产生, 系统的气化温度应适当降低以防止CaCO3的煅烧分解。
Abstract
Biomass pyrolysis in presence of abundant CaO additives is a fundamental process prior to CaO sorption enhanced gasification in biomass-based zero emission system.In the present study, thermogravimetric Fourier transform infrared (TG-FTIR) analysis was adopted to examine the effects of CaO additives on the mass loss process and volatiles evolution of wheat-straw pyrolysis.Observations from TG and FTIR analyses simultaneously demonstrated a two-stage process for CaO catalyzed wheat-straw pyrolysis, different from the single stage process for pure wheat-straw pyrolysis.CaO additives could not only absorb the released CO2 but also reduce the yields of tar species such as toluene, phenol, and formic acid in the first stage, resulting in decreased mass loss and maximum mass loss rate in this stage with an increase in CaO addition.The second stage was attributed to the CaCO3 decomposition and the mass loss and maximum mass loss rate increased with increasing amount of CaO additives.The results of the present study demonstrated the great potential of CaO additives to capture CO2 and reduce tars yields in biomass-based zero emission system.The gasification temperature in the system should be lowered down to avoid CaCO3 decomposition.
参考文献

[1] Ziock H J, Lackner K S, Harrison D P.Zero Emission Coal Power, a New Concept.The First National Conference on Carbon Sequestration, Washington, DC, USA, 2001.

[2] Rizeq R G, Lyon R K, Zamansky V M.Fuel-Flexible AGC Technology for H2, Power, and Sequestration-Ready CO2.The 26th International Technical Conference on Coal Utilization and Fuel Systems, Clearwater, Florida, USA, 2001.

[3] Lin S Y, Suzuki Y, Hatano H, et al.Energy and Fuels, 2001, 15(2): 339.

[4] WANG Qin-hui, SHEN Xun, LUO Zhong-yang, et al(王勤辉, 沈洵, 骆仲泱, 等).Power Engineering(动力工程), 2003, 23(5): 2711.

[5] Wang Z H, Zhou J H, Wang Q H, et al.International Journal of Hydrogen Energy, 2006, 31(7): 945.

[6] GUAN Jian, WANG Qin-hui, LUO Zhong-yang, et al(关键, 王勤辉, 骆仲泱, 等).Proceedings of the CSEE(中国电机工程学报), 2006, 26(9): 7.

[7] Youssef M A, Wahid S S, Mohamed M A, et al.Applied Energy, 2009, 86(12): 2644.

[8] Guan J, Wang Q H, Li X M, et al.Renewable Energy, 2007, 32(15): 2502.

[9] Florin N H, Harris A T.Chemical Engineering Science, 2008, 63(2): 287.

[10] Raveendran K, Ganesh A, Khilar K C.Fuel, 1995, 74(12): 1812.

[11] Nowakowski D J, Jones J M, Brydson R M D, et al.Fuel, 2007, 86(15): 2389.

[12] Wornat M J, Nelson P F.Energy & Fuels, 1992, 6(2): 136.

[13] Shimada N, Kawamoto H, Saka S.Journal of Analytical and Applied Pyrolysis, 2008, 81(1): 80.

[14] LU Yong-quan, DENG Zhen-hua(卢涌泉, 邓振华).Practical Infrared Spectroscopy Analysis(实用红外光谱解析).Beijing: Publishing House of Electronics Industry(北京: 电子工业出版社), 1989.

[15] Abu El-Rub Z, Bramer E A, Brem G.Industrial & Engineering Chemistry Research, 2004, 43(22): 6911.

[16] Jess A.Fuel, 1996, 75(12): 1441.

[17] Jia Y B, Huang J J, Wang Y.Energy & Fuels, 2004, 18(6): 1625.

韩龙, 王勤辉, 杨玉坤, 余春江, 方梦祥, 骆仲泱. 麦秆添加大量CaO热解的TG-FTIR实验研究[J]. 光谱学与光谱分析, 2011, 31(4): 942. HAN Long, WANG Qin-hui, YANG Yu-kun, YU Chun-jiang, FANG Meng-xiang, LUO Zhong-yang. TG-FTIR Study on Pyrolysis of Wheat-Straw with Abundant CaO Additives[J]. Spectroscopy and Spectral Analysis, 2011, 31(4): 942.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!