光子学报, 2016, 45 (9): 0927001, 网络出版: 2016-10-19  

基于量子点相干光学谱的马约拉纳费米子探测

Majorana Fermions Detection Based on the Coherent Optical Spectrum of a Quantum Dot
作者单位
安徽理工大学 理学院, 安徽 淮南 232001
摘要
研究了半导体纳米线/超导体复合结构中的马约拉纳费米子的存在情况, 提出一种用相干光学谱探测马约拉纳费米子的全光学方法.将一束较强的泵浦激光和一束较弱的探测激光同时作用于半导体量子点, 由系统的哈密顿量导出半导体量子点的相干光学谱.数值模拟结果表明, 相干光学谱中呈现出由半导体量子点与马约拉纳费米子耦合诱导的明确的马约拉纳费米子迹象.半导体量子点与马约拉纳费米子之间的无接触性, 避免了探测中杂质信号的引入.半导体量子点与马约拉纳费米子间的耦合强度和探测吸收谱中两尖峰之间的分裂宽度呈正比, 可通过测量分裂宽度获得耦合强度, 为耦合强度的确定提供了直观的测量方法.
Abstract
The existence of Majorana fermions in hybrid semiconductor/superconductor heterostructures was studied, and an all-optical method to probe the Majorana fermions by using coherent optical spectra was presented. A strong pump laser and a weak probe laser were acted on semiconductor quantum dot, and the coherent optical spectra were derived by the Hamiltonian of system. The numerical results indicate that the coherent optical spectra present a distinct signature of the coupling between the semiconductor quantum dot and the Majorana fermions in the optical detection method. The characteristic of non-contact between the semiconductor quantum dot and the Majorana fermions can make the detection process avoid introducing noises. The coupling strength between the semiconductor quantum dot and the Majorana fermions is proportional to the distance of two the peaks in the probe absorption spectrum, so that the coupling strength can be obtained by measuring the distance of two the peaks, which presents a straight forward means to determine the coupling strength.MOURIK V, ZUO K, FROLOV S M, et al. Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices[J]. Science, 2012, 336(6084): 1003-1007.
参考文献

[1] DEND M T, YU C L, HUANG G Y, et al. Anomalous zero-bias conductance peak in a Nb-InSb nanowire-Nb hybrid device[J]. Nano Letters, 2012, 12(12): 6414-6419.

[2] DAS A, RONEN Y, MOST Y, et al. Zero-bias peaks and splitting in an Al-InAs nanowire topological superconductor as a signature of Majorana fermions[J]. Nature Physics, 2012, 8(12): 887-895.

[3] ROKHINSON L P, LIU X, FURDYNA J K. The fractional a.c. Josephson effect in a semiconductor-superconductor nanowire as a signature of Majorana particles[J]. Nature Physics, 2012, 8(11): 795-799.

[4] ELLIOTT S R, FRANZY M. Colloquium: Majorana Fermions in nuclear, particle and solid-state physics[J]. Reviews of Modern Physics,. 2015, 87(1): 137-164.

[5] PENG Y, PIENTKA F, GLAZMAM L I, et al. Strong localization of Majorana end states in chains of magnetic adatoms[J]. Physical Review Letters, 2015, 114(10): 106801.

[6] YIN J X, WU Z, WANG J H, et al. Observation of a robust zero-energy bound state in iron-based superconductor Fe(Te,Se)[J]. Nature Physics, 2015, 11(7): 543-546.

[7] CHEN H J, ZHU K D. Surface plasmon enhanced sensitive detection for possible Majorana signature via hybrid semiconductor quantum dot-metal nanoparticle system[J]. Scientific Reports, 2015, 5(6): 13518-13528.

[8] CHEN H J, ZHU K D. All-optical scheme for detecting the possible Majorana signature based on QD and nanomechanical resonator systems[J]. Science China Physics, Mechanics and Astronomy, 2015, 58(5): 050301.

[9] ALBRECHT S M, HIGGINBOTHAM A P, MADSEN M, et al. Exponential protection of zero modes in Majorana islands[J]. Nature, 2016, 531(7593): 206-209.

[10] FU L, KANE C L. Superconducting proximity effect and Majorana Fermions at the surface of a topological insulator[J]. Physical Review Letters, 2008, 100(9): 096407.

[11] OREG Y, REFAEL G, VON OPPEN F. Helical liquids and Majorana bound states in quantum wires[J]. Physical Review Letters, 2010, 105(17): 177002.

[12] TANAKA Y, YOKOYAMA T, NAGAOSA N. Manipulation of the Majorana Fermion, Andreev reflection, and Josephson current on topological insulators[J]. Physical Review Letters, 2009, 103(10): 107002.

[13] LUTCHYN R M, SAU J D, DAS S S. Majorana Fermions and a topological phase transition in semiconductor-superconductor heterostructures[J]. Physical Review Letters, 2010, 105(7): 077001.

[14] BOLECH C J, DEMLER E. Observing Majorana bound states in p-wave superconductors using noise measurements in tunneling experiments[J]. Physical Review Letters, 2007, 98(23): 237002.

[15] LAW K T, LEE P A, NG T K. Majorana Fermion induced resonant Andreev reflection[J]. Physical Review Letters, 2009, 103(23): 237001.

[16] FU L, KANE C L. Josephson current and noise at a superconductor/quantum-spin-Hall-insulator/superconductor junction[J]. Physical Review B, 2009, 79(16): 161408.

[17] FLENSBERG K. Tunneling characteristics of a chain of Majorana bound states[J]. Physical Review B, 2010, 82(18): 180516.

[18] SAU J D, TEWARI S, LUTCHYN R M, et al. Non-Abelian quantum order in spin-orbit-coupled semiconductors: Search for topological Majorana particles in solid-state systems[J]. Physical Review B, 2010, 82(21): 214509.

[19] PIENTKA F, KELLS G, ROMITO A, et al. Enhanced zero-bias Majorana peak in the differential tunneling conductance of disordered multisubband quantum-wire/superconductor junctions[J]. Physical Review Letters, 2012, 109(22): 227006.

[20] LEE E J H, JIANG X, AGUADO R, et al. Zero-bias anomaly in a nanowire quantum dot coupled to superconductors[J]. Physical Review Letters, 2012, 109(18): 186802.

[21] FINCK A D K, VAN HARLINGEN D J, MOHSENI P K, et al. Anomalous modulation of a zero-bias peak in a hybrid nanowire-superconductor device[J]. Physical Review Letters, 2013, 110(12): 126406.

[22] LIU D E, BARANGER H U. Detecting a Majorana-fermion zero mode using a quantum dot[J]. Physical Review B, 2011, 84(20): 201308.

[23] CAO Y S, WANG P Y, XIONG G, et al. Probing the existence and dynamics of Majorana fermion via transport through a quantum dot[J]. Physical Review B, 2012, 86(11): 115311.

[24] FLENSBERG K. Non-Abelian operations on Majorana Fermions via single-charge control[J]. Physical Review Letters, 2011, 106(9): 090503.

[25] GONG W J, ZHANG S F, LI Z C, et al. Detection of a Majorana fermion zero mode by a T-shaped quantum-dot structure[J]. Physical Review B, 2014, 89(24): 245413.

[26] LEIJNSE M, FLENSBERG K. Scheme to measure Majorana fermion lifetimes using a quantum dot[J]. Physical Review B, 2011, 84(14): 140501.

[27] STEVAN N P, DROZDOV I K, JIAN L, et al. Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor[J]. Science, 2014, 346(6209): 602-607.

[28] XU X D, SUN B, BEMAN P R, et al. Coherent optical spectroscopy of a strongly driven quantum dot[J]. Science, 2007, 317(5840): 929-932

[29] ZRENNER A, BEHAM E, STUFLER S, et al. Coherent properties of a two-level system based on a quantum-dot photodiode[J]. Nature, 2002, 418(6898): 612-614.

[30] STUFLER S, ESTER P, ZRENNER A, et al. Quantum optical properties of a single InxGa1-xAs-GaAs quantum dot two-level system[J]. Physical Review B, 2005, 72(12): 121301.

[31] BOYD R W. Nonlinear optics[M]. San Diego, CA: Academic Press, 1992.

[32] MAHAN G D. Many-particle physics[M]. New York: Plenum Press, 1992.

[33] HEWSON A C. The Kondo problem to heavy Fermions[M]. New York: Cambridge University Press, 1993.

[34] WILSON-RAE I, ZOLLER P, IMAMOGLU A. Laser cooling of a nanomechanical resonator mode to its quantum ground state[J]. Physical Review Letters, 2004, 92(7): 075507.

陈华俊, 方贤文. 基于量子点相干光学谱的马约拉纳费米子探测[J]. 光子学报, 2016, 45(9): 0927001. CHEN Hua-jun, FANG Xian-wen. Majorana Fermions Detection Based on the Coherent Optical Spectrum of a Quantum Dot[J]. ACTA PHOTONICA SINICA, 2016, 45(9): 0927001.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!