光学学报, 2020, 40 (3): 0327001, 网络出版: 2020-02-10   

煤烟凝聚粒子对量子卫星通信性能的影响 下载: 967次

Influence of Soot Agglomerated Particles on Quantum Satellite Communication Performance
作者单位
1 南京信息工程大学电子与信息工程学院, 江苏 南京 210044
2 南京信息工程大学江苏省大气环境与装备技术协同创新中心, 江苏 南京 210044
引用该论文

刘邦宇, 张秀再, 徐茜. 煤烟凝聚粒子对量子卫星通信性能的影响[J]. 光学学报, 2020, 40(3): 0327001.

Bangyu Liu, Xiuzai Zhang, Xi Xu. Influence of Soot Agglomerated Particles on Quantum Satellite Communication Performance[J]. Acta Optica Sinica, 2020, 40(3): 0327001.

参考文献

[1] Deng F G, Long G L, Liu X S. Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block[J]. Physical Review A, 2003, 68(4): 042317.

[2] Deng F G, Long G L. Secure direct communication with a quantum one-time pad[J]. Physical Review A, 2004, 69(5): 052319.

[3] 张军, 彭承志, 包小辉, 等. 量子密码实验新进展——13 km 自由空间纠缠光子分发: 朝向基于人造卫星的全球化量子通信[J]. 物理, 2005, 34(10): 701-707.

    Zhang J, Peng C Z, Bao X H, et al. New progress on experimental quantum cryptography——experimental free-space distribution of entangled photon pairs over 13 km[J]. Physics, 2005, 34(10): 701-707.

[4] Yin J, Ren J G, Lu H, et al. Quantum teleportation and entanglement distribution over 100-kilometre free-space channels[J]. Nature, 2012, 488(7410): 185-188.

[5] Liao S K, Yong H L, Liu C, et al. Long-distance free-space quantum key distribution in daylight towards inter-satellite communication[J]. Nature Photonics, 2017, 11(8): 509-513.

[6] Minder M, Pittaluga M, Roberts G L, et al. Experimental quantum key distribution beyond the repeaterless secret key capacity[J]. Nature Photonics, 2019, 13(5): 334-338.

[7] 刘晓慧, 裴昌幸, 聂敏. 量子无线通信网络构建及性能分析[J]. 吉林大学学报(工学版), 2014, 44(4): 1177-1181.

    Liu X H, Pei C X, Nie M. Quantum wireless communication network model and performance analysis[J]. Journal of Jilin University(Engineering and Technology Edition), 2014, 44(4): 1177-1181.

[8] 聂敏, 雷鹏, 杨光, 等. 基于最大权重值纠缠分发的量子无线多跳网络路由协议研究[J]. 量子光学学报, 2019, 25(1): 22-35.

    Nie M, Lei P, Yang G, et al. Research on quantum wireless multi-hop network routing protocol based on maximum weights entanglement distribution[J]. Acta Sinica Quantum Optica, 2019, 25(1): 22-35.

[9] 李祥震, 苗希彩, 亓晓, 等. 复杂海况下激光气-海信道传输特性[J]. 光学学报, 2018, 38(3): 0301002.

    Li X Z, Miao X C, Qi X, et al. Laser atmosphere-seawater channel transmission characteristics under complicated sea conditions[J]. Acta Optica Sinica, 2018, 38(3): 0301002.

[10] 聂敏, 任家明, 杨光, 等. 冰水混合云对量子卫星通信性能的影响[J]. 光子学报, 2016, 45(9): 0927004.

    Nie M, Ren J M, Yang G, et al. Influences of the ice-water mixed clouds on the performance of quantum satellite communication[J]. Acta Photonica Sinica, 2016, 45(9): 0927004.

[11] 高锟, 聂敏, 杨光, 等. 降雨背景下自由空间量子通信的性能研究[J]. 激光与光电子学进展, 2017, 54(1): 012701.

    Gao K, Nie M, Yang G, et al. Performance of free-space quantum communication in context of rainfall[J]. Laser & Optoelectronics Progress, 2017, 54(1): 012701.

[12] 聂敏, 任杰, 杨光, 等. PM2.5 大气污染对自由空间量子通信性能的影响[J]. 物理学报, 2015, 64(15): 150301.

    Nie M, Ren J, Yang G, et al. Influences of PM2.5 atmospheric pollution on the performance of free space quantum communication[J]. Acta Physica Sinica, 2015, 64(15): 150301.

[13] Sorensen C M, Yon J, Liu F S, et al. Light scattering and absorption by fractal aggregates including soot[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 217: 459-473.

[14] Si M T, Cheng Q, Song J L, et al. Study on inversion of morphological parameters of soot aggregates in hydrocarbon flames[J]. Combustion and Flame, 2017, 183: 261-270.

[15] 赵太飞, 冷昱欣, 杨黎洋, 等. 紫外光在烟尘团簇粒子中的散射特性[J]. 激光与光电子学进展, 2019, 56(5): 050103.

    Zhao T F, Leng Y X, Yang L Y, et al. Characteristics of ultraviolet light scattering by soot cluster particles[J]. Laser & Optoelectronics Progress, 2019, 56(5): 050103.

[16] Ku J C, Shim K H. A comparison of solutions for light scattering and absorption by agglomerated or arbitrarily-shaped particles[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 1992, 47(3): 201-220.

[17] 王潋, 周媛媛, 周学军, 等. 泡沫覆盖不规则海面的空-水量子密钥分发[J]. 光学学报, 2018, 38(10): 1027002.

    Wang L, Zhou Y Y, Zhou X J, et al. Air-water quantum key distribution on irregular sea surface covered with foams[J]. Acta Optica Sinica, 2018, 38(10): 1027002.

[18] . Review of publications-light scattering by small particles[J]. Journal of the Royal Astronomical Society of Canada, 1960, 54: 89.

[19] 类成新. 随机分布簇团粒子传输特性研究[D]. 西安: 西安电子科技大学, 2005: 79- 80.

    Lei CX. Research on transmission property of randomly clustered aggregate particles[D]. Xi'an:Xidian University, 2005: 79- 80.

[20] 唐守荣, 聂敏, 杨光, 等. 空间尘埃等离子体对量子卫星通信性能的影响[J]. 光子学报, 2017, 46(12): 1206002.

    Tang S R, Nie M, Yang G, et al. Influence of space dusty plasmas on the performance of quantum satellite communication[J]. Acta Photonica Sinica, 2017, 46(12): 1206002.

[21] 聂敏, 唐守荣, 杨光, 等. 中纬度地区电离层偶发E层对量子卫星通信性能的影响[J]. 物理学报, 2017, 66(7): 070302.

    Nie M, Tang S R, Yang G, et al. Influence of the ionospheric sporadic E layer on the performance of quantum satellite communication in the mid latitude region[J]. Acta Physica Sinica, 2017, 66(7): 070302.

[22] 张永德. 量子信息物理原理[M]. 北京: 科学出版社, 2005: 125- 151.

    Zhang YD. Principles of quantum information physics[M]. Beijing: Science Press, 2005: 125- 151.

[23] 阎毅. 自由空间量子通信若干问题研究[D]. 西安:西安电子科技大学, 2009: 49- 53.

    YanY. Research on some issues of quantum communication in free space[D]. Xi'an:Xidian University, 2009: 49- 53.

[24] 聂敏, 潘越, 杨光, 等. 非均匀水流中涌浪运动对水下量子通信性能的影响[J]. 物理学报, 2018, 67(14): 140305.

    Nie M, Pan Y, Yang G, et al. Influence of surge movement in non-uniform water flow on performance of underwater quantum communication[J]. Acta Physica Sinica, 2018, 67(14): 140305.

刘邦宇, 张秀再, 徐茜. 煤烟凝聚粒子对量子卫星通信性能的影响[J]. 光学学报, 2020, 40(3): 0327001. Bangyu Liu, Xiuzai Zhang, Xi Xu. Influence of Soot Agglomerated Particles on Quantum Satellite Communication Performance[J]. Acta Optica Sinica, 2020, 40(3): 0327001.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!