量子电子学报, 2018, 35 (1): 37, 网络出版: 2018-01-30  

激光参数和转动温度对激光场中N2O分子取向的影响

Effects of laser parameters and rotational temperature on molecular alignment of N2O in laser field
作者单位
河南师范大学物理与材料科学学院, 河南 新乡 453007
摘要
理论研究了单色飞秒激光脉冲场作用下激光脉冲宽度、激光强度和转动 温度对N2O分子取向的影响,讨论了三种情况下激光场中自由参数 对N2O分子取向的影响: 转动温度和光强不变时,只改变脉冲宽度; 转动温度不变,在相同脉冲宽度时只改变光强;脉冲宽度和激光强度都不 变,只改变转动温度。结果表明通过精细调节脉冲宽度、激光强度和转动 温度可以操纵分子取向的增强或减弱。
Abstract
Effects of laser pulse width, laser intensity and rotational temperature on molecule alignment of N2O in monochromatic femtosecond laser pulse field are investigated theoretically. Influences of free parameters in laser field on molecule alignment of N2O are investigated in the following three cases. When the rotation temperature and laser intensity keep constant, only the pulse width is changed. When the temperature is constant, only the light intensity is changed at the same pulse width. When the pulse width and laser intensity are unchanged, only the rotational temperature is changed. Results show that by precisely adjusting the pulse width, laser intensity and rotational temperature, the molecular alignment can be enhanced or weakened.
参考文献

[1] Staniforth M, Daly S, Reid K L, et al. A generic pi* shape resonance observed in energy- dependent photoelectron angular distributions from two-colour, resonant multiphoton ionization of difluorobenzene isomers[J]. Journal of Chemical Physics, 2013, 139(6): 064304.

[2] Hansen J L, Stapelfeldt H, Dimitrovski D, et al. Time-resolved photoelectron angular distributions from strong-field ionization of rotating naphthalene molecules[J]. Physical Review Letters, 2011, 106: 073001.

[3] Shen Huan, Hua Linqiang. Photoionization/photodissociation mechanisms of allyl chloride by femtosecond photoelectron imaging technology[J]. Chinese Journal of Quantum Electronics (量子电子学报), 2016, 33(4): 385-391 (in Chinese).

[4] Shen Huan, Zhang Bing. Photoionization/photodissociation mechanisms of allyl chloride with a femtosecond laser pulse[J]. Chinese Journal of Quantum Electronics(量子电子学报), 2016, 33(2): 129-134 (in Chinese).

[5] Suarez N, Chacon A, Ciappina M F, et al. Above-threshold ionization and laser-induced electron diffraction in diatomic molecules[J]. Physical Review A, 2016, 94(4): 043423.

[6] Hockett P, Bisgaard C Z, Clarkin O J, et al. Time-resolved imaging of purely valence-electron dynamics during a chemical reaction[J]. Nature Physics, 2011, 7: 612-615.

[7] Skantzakis E, Chatziathanasiou S, Carpeggiani P A, et al. Polarization shaping of high-order harmonics in laser-aligned molecules[J]. Scientific Reports, 2016, 6: 39295.

[8] Baekhoj J E, Madsen L B. Attosecond transient-absorption spectroscopy on aligned molecules[J]. Physical Review A, 2016, 94(4): 043414.

[9] Li Lin, Luo Jianghua. Broad bandwidth attosecond pulse generation using mid-infrared two color field to control quantum trajectory[J]. Chinese Journal of Quantum Electronics(量子电子学报), 2012, 29(5): 530-535 (in Chinese).

[10] Qin C C, Liu Y Z, Zhang S, et al. Direct observation of field-free alignment of asymmetric molecules in excited states[J]. Physical Review A, 2011, 83: 033423.

[11] Wu J, Cai H, Zeng H P, et al. Femtosecond filamentation and pulse compression in the wake of molecular alignment[J]. Optics Letters, 2008, 33: 2593-2595.

[12] Wu J, Cai H, Lu P F, et al. Intense ultrafast light kick by rotational Raman wake in atmosphere[J]. Applied Physics Letters, 2009, 95: 221502.

[13] Liu J, Feng Y H, Li H, et al. Supercontinuum pulse measurement by molecular alignment based cross-correlation frequency resolved optical gating[J]. Optics Express, 2011, 19: 40.

[14] Li M, Pan H F, Tong Y Q, et al. All-optical ultrafast polarization switching of terahertz radiation by impulsive molecular alignment[J]. Optics Letters, 2011, 36: 3633-3635.

[15] Friedrich B, Herschbach D. Alignment and trapping of molecules in intense laser fields[J]. Physical Review Letters, 1995, 74: 4623.

[16] Seideman T. Rotational excitation and molecular alignment in intense laser fields[J]. Journal of Chemical Physics, 1995, 103: 7887-7896.

[17] Qin C, Liu Y, Zhang X, et al. The physical mechanism of molecular alignment and orientation by a femtosecond two-color laser pulse[J]. European Physical Journal D, 2014, 68(5): 1-7.

[18] Zhao S, Lu H, Liu P, et al. Active control scheme and mechanism in the two-pulse molecular alignment[J]. Chemical Physics Letters, 2011, 50(1): 26-30.

[19] Loriot V, Tzallas P, Benis E P, et al. Laser-induced field-free alignment of the OCS molecule[J]. Journal of Physics B, 2007, 40: 2503-2510.

张黎黎, 秦朝朝. 激光参数和转动温度对激光场中N2O分子取向的影响[J]. 量子电子学报, 2018, 35(1): 37. ZHANG Lili, QIN Chaochao. Effects of laser parameters and rotational temperature on molecular alignment of N2O in laser field[J]. Chinese Journal of Quantum Electronics, 2018, 35(1): 37.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!