红外与激光工程, 2016, 45 (4): 0401001, 网络出版: 2016-05-11   

空间碎片激光探测成像通信一体化技术探讨

Discussion of the laser ranging with polarization spectral imaging observations and communication technology for space debris
作者单位
长春理工大学 空地激光通信国防重点学科实验室,吉林 长春 130022
摘要
随着人类探索太空活动的逐年增多,对空间碎片的探测显得尤为重要。文中首先介绍了空间碎片的危害和探测意义,分析了探测空间碎片的主要难点和发展趋势;在此基础上,结合空间碎片的探测难点,提出了一种对空间碎片进行探测与信息传输的新方案,将激光测距、光谱偏振成像、激光通信三种功能融为一体,并进行了关键技术分解和可行性分析,以期为空间碎片探测提供一种新的思路。
Abstract
With the increase of human exploration of space activities, space debris detection is particularly important. In this paper, the space debris hazard and detection significance were firstly introduced. Then, the main difficulties and the development trend of space debris detection were analyzed. On this basis, combined with space debris detection difficulties, a new scheme of detection for space debris and information transmission was proposed, which integrated laser ranging, spectral polarization imaging, laser communication features. And the key technology to decompose and feasibility analysis were made, which may provide a new way of thinking for space debris detection.
参考文献

[1] 吴连大. 人造卫星的空间碎片的轨道和探测[M]. 北京: 中国科学技术出版社, 2011.

    Wu Lianda. Orbital and Detection on Space Debris of Man-made[M]. Beijing: Chinese Technology Press, 2011. (in Chinese)

[2] Kervin P W, Africano J L, Sydney P F, et al. Small satellite characterization technologies applied to orbital debris[J]. Advances in Space Research, 2005, 35: 1214-1225.

[3] Bradley M Ratli. Detection and tracking of RC model aircraft in LWIR microgrid polarimeter data[C]//SPIE, 2011, 8160: 816002.

[4] 王国语.空间碎片国际机制发展趋势分析[J]. 航天器环境工程, 2015, 32(2): 147-149.

    Wang Guoyu. Analysis of the international consultation mechanism for space debris andits development[J]. Spacecraft Environment Engineering, 2015, 32(2): 147-149. (in Chinese)

[5] Kocak D M. A focus on recent developments and trends in underwater imaging[J]. MTS Journal, 2008(42): 52-67.

[6] Einav N, Sarit S, Schechner Y Y. Skyless polarimetric calibration and visibility enhancement[J]. Optics Express, 2009, 17(2): 472-493.

[7] Miles Q Topping, Joel E Pfeiffer, Andrew W Sparks, et al.Advanced airborne hyperspecral imaging system(AAHIS)[C]//SPIE, 2002, 4816: 1-11.

[8] 唐轶峻, 姜晓军, 魏建彦, 等. 高轨空间碎片光电观测技术综述[J]. 宇航学报, 2008, 29(4): 1094-1097.

    Tang Yijun, Jiang XiaoJun, Wei Jianyan, et al. Review of optical observations of high apogee space debris[J]. Journal of Astronautics, 2008, 29(4): 1094-1097. (in Chinese)

[9] Sellar R G, Rafert J B. Effects of aberrations on spatially modulated Fourier transform spectrometers[J]. Optical Engineering, 1994, 33(9): 3087-3092.

[10] Smith W H, Hammer P D. Digital array scanned interferometer: sensors and results[J]. Applied Optics, 1996, 35(16): 2902-2909.

[11] Hammer P D, Johnson L F, Strawa A W, et al. Surface reflectance mapping using interferometric spectral imagery from a remotely piloted aircraft[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(11): 2499-2506.

[12] Lucey P G, Horton K A, Williams T J, et al. SMIFTS: a cryogenically cooled, spatially modulated imaging infrared interferometer spectrometer[C]//SPIE, 1993, 1937: 130-141.

[13] 焦建超, 郑国宪, 苏云. 基于空间站平台的空间碎片探测与清除技术[J]. 国际太空, 2015(4): 53-56.

    Jiao Jianchao, Zheng Guoxian, Su Yun. Space debris detection and removal based on space station platform[J]. Space International, 2015(4): 53-56. (in Chinese)

[14] 王虎, 罗建军. 空间碎片多光谱探测相机光学系统设计[J]. 红外与激光工程, 2014, 43(4): 1188-1189.

    Wang Hu, Luo Jianjun. Optical system design of multi-spectral camera for space debris[J]. Infrared and Laser Engineering, 2014, 43(4): 1188-1189. (in Chinese)

[15] 金小龙, 唐轶峻, 隋成华. 空间碎片光谱特性获取与分析方法研究[J]. 空间科学学报, 2014(1): 95-98.

    Jin Xiaolong, Tang Yijun, Sui Chenghua. A review on the acquisition and analysis methods of spectral characteristics of space debris[J]. Chin J Space Set, 2014(1): 95-98. (in Chinese)

[16] 孙荣煜. 空间碎片光学观测中若干问题研究[J]. 天文学报, 2015, 56: 90-93.

    Sun Rongyu. Research on optical observation for space debris[J]. Acta Astronomica Sinica, 2015, 56: 90-93. (in Chinese)

[17] 姜会林, 江轮, 付强, 等. 空间碎片偏振光谱成像探测技术研究[J]. 深空探测学报, 2015(3): 272-277.

    Jiang Huilinn, Jiang Lun, Fu Qiang, et al. The discussion of the polarization spectral imaging observations technology with space debris[J]. Journal of Deep Space Exploration, 2015(3): 272-277. (in Chinese)

[18] 冯其波. 光学测量技术与应用[M]. 北京: 清华大学出版社, 2008: 143-146.

    Feng Qibo. Optical Measurement Technology and Application[M]. Beijing: Tsinghua University Press, 2008: 143-146. (in Chinese)

[19] 蓝朝桢. 空间目标天基光学观测系统建模与探测能力分析[D]. 郑州: 解放军信息工程大学, 2009.

    Lan Chaozhen. Analysis of space-based optical observation system modeling and detection ability[D]. Zhengzhou: The PLA Information Engineering University, 2009. (in Chinese)

[20] 查为懿. 超分辨光学系统成像原理与技术[D]. 北京: 北京理工大学, 2015.

    Zha Weiyi. Imaging principle and technologies of rhe super-resolving optical system[D]. Beijing: Beijing Institute of Techonology, 2015. (in Chinese)

[21] 杨学峰. 遥感图象频域和空域超分辨重建技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2011.

    Yang Xuefeng. Research on super-resolution reconstruction technology in frequency and spatial domain for demote sensing images[D]. Harbin: Harbin Inititule of Technolgy, 2011. (in Chinese)

[22] 姜会林, 佟首峰. 空间激光通信技术与系统[M]. 北京: 国防工业出版社, 2010: 82.

    Jiang Huilin, Tong Shoufeng. The Technologies and Systems of Space Laser Communication[M]. Beijing: National Defence Industry Press, 2010: 82. (in Chinese)

姜会林, 付强, 张雅琳, 江伦. 空间碎片激光探测成像通信一体化技术探讨[J]. 红外与激光工程, 2016, 45(4): 0401001. Jiang Huilin, Fu Qiang, Zhang Yalin, Jiang Lun. Discussion of the laser ranging with polarization spectral imaging observations and communication technology for space debris[J]. Infrared and Laser Engineering, 2016, 45(4): 0401001.

本文已被 9 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!