红外与毫米波学报, 2019, 38 (4): 04451, 网络出版: 2019-10-14   

探测大气压力的差分吸收激光雷达的一种光发射机

A laser transmitter of differential absorption lidar for atmospheric pressure measurement
洪光烈 1,2,*王钦 1,3肖春雷 1,2孔伟 1,2王建宇 1,3
作者单位
1 中国科学院空间主动光电技术重点实验室,上海 200083
2 中国科学院上海技术物理研究所,上海 200083
3 中国科学院大学,北京 100049
引用该论文

洪光烈, 王钦, 肖春雷, 孔伟, 王建宇. 探测大气压力的差分吸收激光雷达的一种光发射机[J]. 红外与毫米波学报, 2019, 38(4): 04451.

HONG Guang-Lie, WANG Qin, XIAO Chun-Lei, KONG Wei, WANG Jian-Yu. A laser transmitter of differential absorption lidar for atmospheric pressure measurement[J]. Journal of Infrared and Millimeter Waves, 2019, 38(4): 04451.

参考文献

[1] Korb C L, Weng C Y. Differential absorption lidar technique for measurement of the atmospheric pressure profile [J]. Appl. Opt. 1983, 22(23), 3759-3770.

[2] Schwemmer G K, Dombrowski M, Korb C L, et al. A lidar system for measuring atmospheric pressure and temperature profiles [J]. Rev. Sci. Instrum.1987, 58: 2226-2237.

[3] Korb C L, Schwemmer G K, Dombrowski M, et al. Airborne and ground based lidar measurements of the atmospheric pressure profile [J]. Appl. Opt. 1989, 28(15): 3015-3020.

[4] Korb C L, Schwemmer G K, Famiglietti J, et al. Differential absorption lidar for remote sensing of atmospheric pressure and temperature profiles: final report [R]. 1995.

[5] Riris H, Rodriguez M, Allan G R, et al. Pulsed airborne lidar measurements of atmospheric optical depth using the oxygen A-band at 765 nm [J]. Appl. Opt. 2013, 52(25): 6369-6382.

[6] Stephen M, Krainak M, Riris H, et al. Narrowband, tunable, frequency-doubled, erbium-doped fiber-amplified transmitter [J]. Opt. Lett. 2007, 32(15): 2073-2075.

[7] Riris H, Rodriguez M, Mao J P, et al. Airborne demonstration of atmospheric oxygen optical depth measurements with an integrated path differential absorption lidar [J]. Optics Express, 2017, 25(23): 29307-29327.

[8] Amediek A, Fix A, Wirth M, et al. Development of an OPO system at 1.57 μm for integrated path DIAL measurement of atmospheric carbon dioxide [J]. Appl. Phys. B, 2008, 92(2):295-302.

[9] Chuang T, Walters B, Shuman T, et al. Single frequency and wavelength stabilized near infrared laser source for water vapor DIAL remote sensing application [J]. Proc. SPIE, 2015, 9342: 93420J.

[10] Raybaut M, Schmid T, Godard A, et al. High-energy single-longitudinal mode nearly diffraction-limited optical parametric source with 3 MHz frequency stability for CO2 DIAL [J]. Opt. Lett. 2009, 34(13):2069-2071.

[11] Wulfmeyer V. Ground-based differential absorption lidar for water-vapor and temperature profiling: development and specifications of a high-performance laser transmitter [J].Applied Optics,1998,37(18):3804-3824.

[12] Jens Bo¨senberg. Ground-based differential absorption lidar for water-vapor and temperature profiling: methodology [J]. Applied Optics, 1998, 37(18): 3845-3860.

[13] Flamant C N, Schwemmer G K, Korb C L. Pressure measurements using an airborne differential absorption lidar. Part I: Analysis of the systematic error sources [J]. 1999, Journal of Atmospheric and Oceanic Technology, 16:561-574.

[14] Spth F, Metzendorf S, Behrendt A, et al. Online/offline injection seeding system with high frequency-stability and low crosstalk for water vapor DIAL [J]. Optics Communications. 2013,309: 37-43.

[15] Mahnke P, Klingenberg H H, Fix A, et al. Dependency of injection seeding and spectral purity of a single resonant KTP optical parametric oscillator on the phase matching condition[J]. Appl. Phys. B, 2007, 89: 1-7.

[16] Velarde L, Engelhart D P, Matsiev D, et al. Generation of tunable narrow bandwidth nanosecond pulse in the deep ultraviolet for efficient optical pumping and high resolution spectroscopy [J]. Rev. Sci. Instrum. 2010, 81:063106.

[17] Mammez D, Dherbecourt J B, Raybaut M, et al. Linewidth, and real-time spectral analysis of an amplified pulsed nested cavity optical parametric oscillator [C]. 2015,European Union,978-1-4673-7475-0.

[18] He Y, Baxter G W, Orr B J. Locking the cavity of a pulsed periodically poled lithium niobate optical parametric oscillator to the wavelength of a continuous-wave injection seeder by an “intensity-dip” method [J]. Rev. Sci. Instrum. 1999, 70(8): 3203-3213.

[19] Kobtsev S, Kandrushin S, Potekhin A. Long-term frequency stabilization of a continuous-wave tunable laser with the help of a precision wavelength meter [J]. Appl. Opt. 2007, 46(23): 5840-5843.

[20] Lemmerz C, Lux O, Reitebuch O, et al. Frequency and timing stability of an airborne injection-seeded Nd:YAG laser system for direct-detection wind lidar [J]. Applied Optics, 2017, 56(3):9057-9068.

[21] Wulfmeyer V, B¨osenberg J, Single-mode operation of an injection-seeded alexandrite ring laser for application in water-vapor and temperature differential absorption lidar[J]. Optics Letters.1996,21(15): 1150-1152.

[22] Kharchenko O V, Matvienko G G, Grishin A I, et al. Possibility of a meteorological lidar for measurement of basic meteorological parameters of the atmosphere [C]. 2005, Proceedings of SPIE, 5832, doi: 10.1117/12.619840.

[23] Bruneau D, des Lions T A, Quaglia P, et al. Injection-seeded pulsed alexandrite laser for differential absorption lidar application [J].Appl. Opt. 1994, 33(18): 3941-3950.

洪光烈, 王钦, 肖春雷, 孔伟, 王建宇. 探测大气压力的差分吸收激光雷达的一种光发射机[J]. 红外与毫米波学报, 2019, 38(4): 04451. HONG Guang-Lie, WANG Qin, XIAO Chun-Lei, KONG Wei, WANG Jian-Yu. A laser transmitter of differential absorption lidar for atmospheric pressure measurement[J]. Journal of Infrared and Millimeter Waves, 2019, 38(4): 04451.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!