中国激光, 2017, 44 (3): 0300001, 网络出版: 2017-03-08   

基于LED的高速可见光通信 下载: 1872次

High-Speed Visible Light Communication Based on LED
作者单位
复旦大学信息科学与工程学院通信科学与工程系电磁波信息科学教育部重点实验室, 上海 200433
摘要
到2018年,普通发光二极管(LED)的普及率将达到80%。基于LED的可见光通信(VLC)技术有望为高速VLC的实现提供新方案。国内外研究者们分别对先进调制、编码/均衡、复用技术及材料/芯片等进行了研究,以扩展调制带宽、提高传输速率和增加传输距离。对载波幅相调制、自适应比特功率加载的正交频分复用调制、硬件/软件预均衡、后均衡等技术以及新型光学材料的原理和性能等国际研究热点进行了分析与讨论,对最新的研究进展进行了总结,从而为未来VLC的研究提供一定的参考。
Abstract
By the year of 2018, the popularizing rate of common light emitting diode (LED) will reach 80%. The visible light communication (VLC) technology based on LED is expected to provide new scheme for the implementation of high-speed VLC. Researchers at home and aboard have studied technologies of modulation, coding or equalization and multiplexing, materials and chips in order to broaden the modulation bandwidth, improve the transmission rate and increase the transmission distance. The international research hotspots are analyzed and discussed, including technologies of carrier amplitude-phase modulation, orthogonal frequency division multiplexing modulation with adaptive bit power loading, hardware or software pre-equalization and post-equalization, and the principle and the performance of novel optical material. The latest researches are summarized in order to offer a reference for the future research of VLC.
参考文献

[1] Tanaka Y, Haruyama S, Nakagawa M. Wireless optical transmissions with white colored LED for wireless home links[C]. The 11th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, 2000: 6866645.

[2] Conti J P. What you see is what you send[J]. Engineering & Technology, 2008, 11: 66-67.

[3] Kottke C, Habel K, Grobe L, et al. Single-channel wireless transmission at 806 Mbit/s using a white-light LED and a PIN-based receiver[C]. 14th IEEE International Conference on Transparent Optical Networks, 2012: 12908328.

[4] Khalid A M, Cossu G, Corsini R, et al. 1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation[J]. IEEE Photonics Journal, 2012, 4(5): 1465-1473.

[5] Le Minh H, O′Brien D, Faulkner G, et al. 100-Mb/s NRZ visible light communications using a postequalized white LED[J]. IEEE Photonics Technology Letters, 2009, 21(15): 1063-1065.

[6] Azhar A H, Tran T A, O′Brien D. Demonstration of high-speed data transmission using MIMO-OFDM visible light communications[C]. IEEE Globecom Workshops, 2010: 11774503.

[7] Vucic J, Kottke C, Habel K, et al. 803 Mbit/s visible light WDM link based on DMT modulation of a single RGB LED luminary[C]. Optical Fiber Communication Conference, 2011: OWB6.

[8] Azhar A H, Tran T A, O′Brien D. Demonstration of high-speed data transmission using MIMO-OFDM visible light communications[C]. IEEE Globecom Workshops, 2010: 11774503 .

[9] Haigh P A, Chvojka P, Zvanovec S, et al. Experimental verification of visible light communications based on multi-band CAP modulation[C]. Optical Fiber Communication Conference, 2015: Tu2G.2.

[10] Wu F M, Lin C T, Wei C C, et al. 3.22-Gb/s WDM visible light communication of a single RGB LED employing carrier-less amplitude and phase modulation[C]. Optical Fiber Communication Conference, 2013: OTh1G.4.

[11] Wang Y, Tao L, Huang X, et al. 8-Gb/s RGBY LED-based WDM VLC system employing high-order CAP modulation and hybrid post equalizer[J]. IEEE Photonics Journal, 2015, 7(6): 15568083.

[12] Wu F M, Lin C T, Wei C C, et al. 1.1-Gb/s white-LED-based visible light communication employing carrier-less amplitude and phase modulation[J]. IEEE Photonics Technology Letters, 2012, 24(19): 1730-1732.

[13] Wang Y, Tao L, Wang Y, et al. High speed WDM VLC system based on multi-band CAP64 with weighted pre-equalization and modified CMMA based post-equalization[J]. IEEE Communications Letters, 2014, 18(10): 1719-1722.

[14] Wang Y, Tao L, Huang X, et al. Enhanced performance of a high-speed WDM CAP64 VLC system employing Volterra series-based nonlinear equalizer[J]. IEEE Photonics Journal, 2015, 7(3): 7901907.

[15] Wang Y, Huang X, Tao L, et al. 1.8-Gb/s WDM visible light communication over 50-meter outdoor free space transmission employing CAP modulation and receiver diversity technology[C]. Optical Fiber Communication Conference, 2015: M2F.2.

[16] Huang X, Chen S, Wang Z, et al. 2.0-Gb/s visible light link based on adaptive bit allocation OFDM of a single phosphorescent white LED[J]. IEEE Photonics Journal, 2015, 7(5): 7904008.

[17] Fujimoto N, Mochizuki H. 477 Mbit/s visible light transmission based on OOK-NRZ modulation using a single commercially available visible LED and a practical LED driver with a pre-emphasis circuit[C]. Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, 2013: 13581859.

[18] Huang X, Shi J, Li J, et al. 750 Mbit/s visible light communications employing 64QAM-OFDM based on amplitude equalization circuit[C]. Optical Fiber Communication Conference, 2015: Tu2G.1.

[19] Huang X, Chen S, Wang Z, et al. 1.2 Gbit/s visible light transmission based on orthogonal frequency-division multiplexing using a phosphorescent white light-emitting diode and a pre-equalization circuit[J]. Chinese Optics Letters, 2015, 13(10): 100602.

[20] 迟 楠. LED VLC关键器件与应用[M]. 北京: 人民邮电出版社, 2015: 8.

    Chi Nan. Key devices and applications of LED visible light communication[M]. Beijing: Posts & Telecom Press, 2015: 8.

[21] Langer K D, Vucic J, Kottke C, et al. Advances and prospects in high-speed information broadcast using phosphorescent white-light LEDs[C]. 11th International Conference on Transparent Optical Networks, 2009: 10803391.

[22] Le Minh H, O′Brien D, Faulkner G, et al. High-speed visible light communications using multiple-resonant equalization[J]. IEEE Photonics Technology Letters, 2008, 20(14): 1243-1245.

[23] Shrestha N, Sohail M, Viphavakit C, et al. Demonstration of visible light communications using RGB LEDs in an indoor environment[C]. International Conference on Electrical Engineering/Electronics Computer Telecommunications and Information Technology, 2010: 11390377.

[24] Kottke C, Habel K, Grobe L, et al. Single-channel wireless transmission at 806 Mbit/s using a white-light LED and a PIN-based receiver[C]. 14th International Conference on Transparent Optical Networks, 2012: 12908328.

[25] Li J H, Huang X X, Ji X M, et al. An integrated PIN-array receiver for visible light communication[J]. Journal of Optics, 2015, 17(10): 105805.

[26] Vitasek J, Vasinek V, Latal J, et al. Visible light communications with compound spectra[J]. Optics Communications, 2016, 363: 63-68.

[27] Vitta P, Pobedinskas P, Zukauskas A. Phosphor thermometry in white light-emitting diodes[J]. IEEE Photonics Technology Letters, 2007, 19(6): 399-401.

[28] Shionoya S, Yen W M, Yamamoto H. Phosphor handbook[M]. Boca Raton: CRC Press, 2006: 978.

[29] Held G. Introduction to light emitting diode technology and applications[M]. Boca Raton: CRC Press, 2009: 192.

[30] Schubert E F, Gessmann T, Kim J K. Light emitting diodes[M]. Cambridge: Cambridge University Press, 2006: 434.

[31] Sun Z, Teng D, Liu L, et al. A power-type single GaN-based blue LED with improved linearity for 3 Gb/s free-space VLC without pre-equalization[J]. IEEE Photonics Journal, 2016, 8(3): 7904308.

[32] Chi N, Shi J, Zhou Y, et al. High speed LED based visible light communication for 5 G wireless backhaul[C]. Photonics Society Summer Topical Meeting Series, 2016: 16263477.

迟楠, 卢星宇, 王灿, 周盈君. 基于LED的高速可见光通信[J]. 中国激光, 2017, 44(3): 0300001. Chi Nan, Lu Xingyu, Wang Can, Zhou Yingjun. High-Speed Visible Light Communication Based on LED[J]. Chinese Journal of Lasers, 2017, 44(3): 0300001.

本文已被 30 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!