光学学报, 2013, 33 (11): 1112002, 网络出版: 2013-09-17   

基于时程分析的TMT三镜支撑系统地震分析

TMT M3 System Seismic Analysis Based on Time History Method
作者单位
1 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院大学, 北京 100049
摘要
为了完成30 m光学红外望远镜(TMT)三镜支撑系统(M3CA)抗震性能分析,编制了地震波拟合软件,拟合出符合设计要求的地震时间历程,并基于时程分析方法进行了结构的地震有限元仿真。基于具有随机相位的三角级数理论编制了拟合地震波的软件,针对拟合精度低的问题引入幅值校正方法,使拟合的地震波谱与设计响应谱的平均偏差在4%以内;基于该系统的设计响应谱,拟合了返回周期为200年的地震时间历程;利用时程分析方法对结构进行了有限元仿真。仿真结果表明,三镜相对于三镜室最大位移为1.881 mm;三镜上的最大应力为0.27 MPa,发生在镜子的侧支撑位置处;支撑结构的最大应力为310.54 MPa,发生在侧支撑杆上。根据材料性能,三镜及侧支撑杆的最大应力均在材料的极限应力之内,故在返回周期为200年的地震发生时可保证系统的安全性。编制的程序拟合精度高,充分考虑了各种因素,结合有限元时程分析,为大型光电设备的地震分析积累了经验。
Abstract
In order to complete the seismic analysis of thirty meter telescope (TMT) tertiary mirror cell assembly (M3CA), seismic wave fitting software has been developed, seismic time histories are obtained through the software, and then seismic analysis has been done based on time history analysis. The software fit for the seismic wave is developed based on the theory of trigonometric series with random phase, amplitude correction is introduced to increase the fitting precision, the average difference between fitting seismic wave spectrum and design response spectrum is less than 4%; then, according to the design response spectrum with average return period of 200 years, seismic time histories are fitted; finite element method (FEM) analysis is carried out based on time history analysis method. The simulation results illustrate that the displacement of tertiary mirror relative to the cell is 1.881 mm; the maximum stress on the mirror is 0.27 MPa which occurs on lateral supporting position; the maximum stress of the support system is 310.54 MPa and appears on the lateral support rod. Compared with material characteristics, the maximum stresses are all within material stress limitation, which indicates that the security will be assured when 200-year return period earthquake happens. The program obtains a high fitting precision and various factors are considered. Combined with the finite element analysis, it will provide experience for seismic analysis of large photoelectric equipment.
参考文献

[1] URS Corporation. Site-Specific Seismic Hazard Assessment of Proposed Thirty Meter Telescope Site, Mauna Kea, Hawaii [OL]. http://tmt.org/sites/default/files/documents/application/pdf/urs_report_2-4-10.pdf.[2013-09-06].

[2] TMT Group. Design Requirements Document for Tertiary Mirror System (M3S) [Z].TMT. OPT. DRD.07.006.REL29. 2012.

[3] F W Kan, J Antebi. Seismic hazard: analysis and design of large ground based telescopes [C]. SPIE, 2008, 7012: 70122E.

[4] F KOCH. Analysis concepts for large telescope structures under earthquake load [C]. SPIE, 1997, 2871: 117-126.

[5] D Tsang, G Austin, M Gedig, et al.. TMT telescope structure system-seismic analysis and design [C]. SPIE, 2008, 7012: 07124J.

[6] D R Neill, M Warmer, J Sebag, et al.. Seismic design accelerations for the LSST telescope [C]. SPIE, 2012, 8444: 84440R.

[7] 王槐, 代霜, 张景旭. 大型地平式望远镜的方位轴系支撑结构[J]. 光学 精密工程, 2012, 20(7): 1509-1516.

    Wang Huai, Dai Shuang, Zhang Jingxu. Azimuth shafting bearing structure in a large alt-azimuth telescope [J]. Optics and Precision Engineering, 2012, 20(7): 1509-1516.

[8] 李杰, 李国强. 地震工程学导论[M]. 北京: 地震出版社, 1984.

    Li Jie, Li Guoqiang. Earthquake Engineer Introduction [M]. Beijing: Earthquake Press, 1984.

[9] 陈永祁, 刘锡荟, 龚思礼. 拟合标准反应谱的人工地震波[J]. 工程力学, 1994, 12(3): 31-42.

    Chen Yongqi, Liu Xiquan, Gong Sili. Artificial seismic wave fitting standard response spectrum [J]. Engineer Mechanics, 1994, 12(3): 31-42.

[10] 杨飞, 明名, 陈宝刚, 等. 仰角变化对1.23 m望远镜光机系统的影响[J]. 激光与光电子进展, 2012, 49(3): 032201.

    Yang Fei, Ming Ming, Chen Baogang, et al.. Influence of diversification of elevation to the opto-mechanical system of 1.23 m telescope [J]. Laser & Optoelectronics Progress, 2012, 49(3): 032201.

[11] 张俊, 鲜浩, 贺元兴, 等. 望远镜主镜温度场理论计算机主镜视宁度分析[J]. 光学学报, 2012, 32(10): 1022001.

    Zhang Jun, Xian Hao, He Yuanxing, et al.. Theoretical calculation of telescope primary mirror′s thermal field and seeing analysis of primary mirror [J]. Acta Optica Sinica, 2012, 32(10): 1022001.

[12] 胡聿贤, 何讯. 考虑相位谱的人造地震动反应谱拟合[J]. 地震工程与工程振动, 1986, 6(2): 37-51.

    Hu Yuxian, He Xun. Artificial seismic response spectrum fitting with phase spectrum considered [J]. Earthquake Engineer and Engineer Vibration, 1986, 6(2): 37-51.

[13] 程纬. 地震加速度反应谱拟合的直接法研究[J]. 工程力学, 2000, 17(1): 83-87.

    Chen Wei. Direction method research on seismic acceleration response spectrum fitting [J]. Engineer Mechanics, 2000, 17(1): 83-87.

[14] 周超, 杨洪波, 吴小霞, 等. 地基大口径望远镜结构的性能分析[J]. 光学 精密工程, 2011, 19(1): 138-145.

    Zhou Chao, Yang Hongbo, Wu Xiaoxia, et al.. Structural analysis of ground based large telescopes [J]. Optics and Precision Engineering, 2011, 19(1): 138-145.

[15] 王新敏. Ansys工程结构数值分析[M]. 北京: 人民交通出版社,2007.

    Wang Xinmin. Ansys Engineer Structure Numerical Analysis [M]. Beijing: China Communications Press, 2007.

苏燕芹, 王富国, 张景旭, 陈宝刚. 基于时程分析的TMT三镜支撑系统地震分析[J]. 光学学报, 2013, 33(11): 1112002. Su Yanqin, Wang Fuguo, Zhang Jingxu, Chen Baogang. TMT M3 System Seismic Analysis Based on Time History Method[J]. Acta Optica Sinica, 2013, 33(11): 1112002.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!