强激光与粒子束, 2017, 29 (9): 091007, 网络出版: 2017-08-30  

温度和压力对Au反射特性影响及动高压下的测温应用分析

Effect of temperature and pressure on gold reflectance characteristics and application analysis of temperature measurement under dynamic high pressure
作者单位
中国工程物理研究院 流体物理研究所, 四川 绵阳 621900
摘要
基于金属电子气模型, 进行了温度、压力对Au反射率变化影响的研究与分析。利用DAC装置开展了压力对Au反射率变化测量实验, 以及激光加热的动态温升条件下温度对Au反射率变化测量实验, 获得了探测光束波长为488 nm条件下, 温度(室温至350 ℃)和压力(11 GPa范围内)对Au反射特性影响的实验结果。结果表明: 在11 GPa压力范围内, 与温度因素相比, 压力对Au的反射率变化影响可忽略; Au对488 nm波长激光的反射率变化趋势为单调递增, 变化幅值达约10%, 且具有反射率与温度的一一对应特性。通过动高压加载下材料温度瞬态测量要求分析, 认为基于Au在488 nm波长下的反射变化特性, 可建立一种适用于动高压加载下低温段(低于1000 K)的瞬态测温方法, 用于解决材料动高压领域的瞬态测温技术难点。
Abstract
Based on metal electron gas model, the studies and analysis on the effect of temperature and pressure on gold reflectance characteristics changes were done. The experiments of pressure effect on gold reflectivity characteristics under 488 nm wavelength laser by DAC setup and those of temperature effect under high energy laser which supplies dynamic temperature rise were also done, the reflectance characteristics changes were obtained in 11 GPa pressure range and room temperature to 350 ℃ temperature range. The results show that the pressure effect comparing with temperature effect on reflectivity is negligible, the reflectivity is monotonely increasing and up to 10% increase, there is a one-to-one correspondence between reflectivity and temperature. Through the requirement analysis of temperature measurement in dynamic high pressure condition, the measurement method of material transient temperature can be established by gold reflectivity change under 488 nm wavelength laser in lower temperature (<1000 K) section of dynamic high pressure loading.
参考文献

[1] 孙承纬, 陆启生, 范正修, 等. 激光辐照效应[M]. 北京: 国防工业出版社, 2002: 65-72. (Sun Chengwei, Lu Qisheng, Fan Zhengxiu, et al. The effect of laser radiation. Beijing: National Defense Industry Press, 2002: 6-27)

[2] 阎守胜. 固体物理基础[M]. 3版. 北京: 北京大学出版社, 2011: 3-26. (Yan Shousheng. Foundation of solid physics. 3rd ed. Beijing: Peking University Press. 2011: 3-26)

[3] 谭华. 实验冲击波物理导引[M]. 北京: 国防工业出版社, 2007: 67-111. (Tan Hua. Introduction to experimental shock-wave physics. Beijing: National Defense Industry Press, 2007: 67-111)

[4] Tan Hua, Dai Chengda. Problems of shock temperature measurements for metals by using optical radiometry method[J]. High Pressure Research, 2001, 21: 183-214.

[5] 孙承纬, 赵剑衡, 王桂吉, 等. 磁驱动准等熵平面压缩和超高速飞片发射实验技术原理、装置及应用[J]. 力学进展, 2014, 42(2): 206-218. (Sun Chengwei, Zhao Jianheng, Wang Guiji, et al. Progress in magnetic loading techniques for isentropic compress experiments and ultra-high velocity flyer launching. Advances in Mechanics, 2014, 42(2): 206-218)

[6] 张永强, 王贵兵, 李维, 等. 激光辐照环境对金属材料反射特性的影响[J]. 强激光与粒子束, 2011, 23(8): 2029-2033. (Zhang Yongqiang, Wang Guibing, Li Wei, et al. Effect of laser irradiation environments on metal material reflection characteristic. High Power Laser and Particle Beams, 2011, 23(8): 2029-2033)

[7] Xie B J, Kar A. Laser welding of thin sheet steel with surface oxidation[J]. Welding Research, 1999, 78(10): 343-347.

[8] Freeman R K, Rigby F A, Morley N. Temperature-dependent reflectance of plated metals and composite materials under laser irradiation[J]. Journal of Thermophysics and Heat Transfer, 2000, 14(3): 305-312.

[9] Ujihara K. Reflectivity of metals at high temperatures[J]. J Appl Phys, 1972, 43(5): 2376-2383.

[10] Seagle C T, Heinz D L, Liu Z, et al. Synchrotron infrared reflectivity measurements of iron at high pressures[J]. Applied Optics, 2009, 48(3): 545-552.

[11] Funk D J, Moore D S, Gahagan K T, et al. Ultrafast measurement of the optical properties of aluminium during shock-wave breakout[J]. Phys Rev B, 2001, 64: 115114.

[12] LaLone B M, Stevens G D, Turley W D, et al. Release path temperatures of shock-compressed tin from dynamic reflectance and radiance measurements[J]. J Appl Phys, 2013, 114: 063506.

[13] 王峰, 彭晓世, 刘慎业, 等, 辐射驱动条件下冲击波速度直接测量技术[J]. 强激光与粒子束, 2011, 23(5): 1272-1276. (Wang Feng, Peng Xiaoshi, Liu Shenye, et al. Direct measurement technique for shock wave velocity with irradiation drive. High Power Laser and Particle Beams, 2011, 23(5): 1272-1276)

[14] 李泽仁, 刘俊, 程晓峰, 等. 冲击压缩下钨靶对514.5 nm激光的漫反射率[J]. 高压物理学报, 1999, 13(1): 71-75. (Li Zeren. Liu Jun, Cheng Xiaofeng, et al. Diffuse reflectivity of shock-compressed tungsten target to 514.5 nm laser. Chinese Journal of High Pressure Physics, 1999, 13(1): 71-75)

[15] 斯托克编. 物理手册[M]. 吴锡真, 李祝霞, 陈师平译. 北京: 北京大学出版社, 2004: 501-503. ( Horst Stcker. Physics handbook. Trans by Wu Xizhen, Li Zhuxia, Chen Shiping. Beijing: Peking University Press, 2004: 501-503)

[16] Beran U D A. The reflectance behaviour of gold at temperatures up to 500 ℃[J]. Mineralogy and Petrology, 1985, 34(3): 211-215.

[17] 经福谦, 陈俊祥. 动高压原理与技术[M]. 北京: 国防工业出版社, 2006: 203-288. (Jing Fuqian, Chen Junxiang. Dynamic high pressure fundamentals and technology. Beijing: National Defense Industry Press, 2006: 203-288)

张永强, 莫建军, 陶彦辉, 谭福利. 温度和压力对Au反射特性影响及动高压下的测温应用分析[J]. 强激光与粒子束, 2017, 29(9): 091007. Zhang Yongqiang, Mo Jianjun, Tao Yanhui, Tan Fuli. Effect of temperature and pressure on gold reflectance characteristics and application analysis of temperature measurement under dynamic high pressure[J]. High Power Laser and Particle Beams, 2017, 29(9): 091007.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!