中国激光, 2020, 47 (5): 0500005, 网络出版: 2020-05-12   

空气激光:强场新效应和远程探测新技术 下载: 2979次内封面文章特邀综述

Air Lasing: Novel Effects in Strong Laser Fields and New Technology in Remote Sensing
姚金平 1,2,*程亚 1,2,3,**
作者单位
1 中国科学院上海光学精密机械研究所强场激光物理国家重点实验室, 上海 201800
2 中国科学院超强激光科学卓越创新中心, 上海 201800
3 华东师范大学精密光谱科学与技术国家重点实验室, 上海 200062
引用该论文

姚金平, 程亚. 空气激光:强场新效应和远程探测新技术[J]. 中国激光, 2020, 47(5): 0500005.

Jinping Yao, Ya Cheng. Air Lasing: Novel Effects in Strong Laser Fields and New Technology in Remote Sensing[J]. Chinese Journal of Lasers, 2020, 47(5): 0500005.

参考文献

[1] Maiman T H. Stimulated optical radiation in ruby[J]. Nature, 1960, 187(4736): 493-494.

[2] Cohen-Tannoudji C N. Nobel lecture: manipulating atoms with photons[J]. Reviews of Modern Physics, 1998, 70(3): 707-719.

[3] Ashkin A, Dziedzic J. Optical trapping and manipulation of viruses and bacteria[J]. Science, 1987, 235(4795): 1517-1520.

[4] Cao X, Jahazi M, Immarigeon J P, et al. A review of laser welding techniques for magnesium alloys[J]. Journal of Materials Processing Technology, 2006, 171(2): 188-204.

[5] Mourou G A, Tajima T, Bulanov S V. Optics in the relativistic regime[J]. Reviews of Modern Physics, 2006, 78(2): 309-371.

[6] Mourou G, Tajima T. The extreme light infrastructure: optics’ next horizon[J]. Optics and Photonics News, 2011, 22(7): 47-51.

[7] Agostini P, Fabre F, Mainfray G, et al. Free-free transitions following six-photon ionization of xenon atoms[J]. Physical Review Letters, 1979, 42(17): 1127-1130.

[8] Fittinghoff D N, Bolton P R, Chang B, et al. Observation of nonsequential double ionization of helium with optical tunneling[J]. Physical Review Letters, 1992, 69(18): 2642-2645.

[9] L'Huillier A. Balcou P. High-order harmonic generation in rare gases with a 1-ps 1053-nm laser[J]. Physical Review Letters, 1993, 70(6): 774-777.

[10] Krause J L, Schafer K J, Kulander K C. High-order harmonic generation from atoms and ions in the high intensity regime[J]. Physical Review Letters, 1992, 68(24): 3535-3538.

[11] Krausz F, Ivanov M. Attosecond physics[J]. Reviews of Modern Physics, 2009, 81(1): 163-234.

[12] Esarey E, Schroeder C B, Leemans W P. Physics of laser-driven plasma-based electron accelerators[J]. Reviews of Modern Physics, 2009, 81(3): 1229-1285.

[13] Henig A, Kiefer D, Markey K, et al. Enhanced laser-driven ion acceleration in the relativistic transparency regime[J]. Physical Review Letters, 2009, 103(4): 045002.

[14] Sugioka K, Cheng Y. Ultrafast lasers: reliable tools for advanced materials processing[J]. Light: Science & Applications, 2014, 3(4): e149.

[15] Wang C, Fomovsky M, Miao G X, et al. Femtosecond laser crosslinking of the cornea for non-invasive vision correction[J]. Nature Photonics, 2018, 12(7): 416-422.

[16] Kasparian J. White-light filaments for atmospheric analysis[J]. Science, 2003, 301(5629): 61-64.

[17] Xu H L, Cheng Y, Chin S L, et al. Femtosecond laser ionization and fragmentation of molecules for environmental sensing[J]. Laser & Photonics Reviews, 2015, 9(3): 275-293.

[18] Vaulin V A, Slinko V N, Sulakshin S S. Air ultraviolet laser excited by high-power microwave pulses[J]. Soviet Journal of Quantum Electronics, 1988, 18(11): 1457-1458.

[19] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 1985, 56(3): 219-221.

[20] Braun A, Korn G, Liu X, et al. Self-channeling of high-peak-power femtosecond laser pulses in air[J]. Optics Letters, 1995, 20(1): 73-75.

[21] Luo Q, Liu W W, Chin S L. Lasing action in air induced by ultra-fast laser filamentation[J]. Applied Physics B: Lasers and Optics, 2003, 76(3): 337-340.

[22] Dogariu A, Michael J B, Scully M O, et al. High-gain backward lasing in air[J]. Science, 2011, 331(6016): 442-445.

[23] Yao J P, Zeng B, Xu H L, et al. High-brightness switchable multiwavelength remote laser in air[J]. Physical Review A, 2011, 84(5): 051802.

[24] PolynkinP, ChengY. Air lasing[M]. Cham: Springer International Publishing, 2018.

[25] Yuan L Q, Liu Y, Yao J P, et al. Recent advances in air lasing: a perspective from quantum coherence[J]. Advanced Quantum Technologies, 2019, 2(11): 1900080.

[26] Li H L, Yao D W, Wang S Q, et al. Air lasing: phenomena and mechanisms[J]. Chinese Physics B, 2019, 28(11): 114204.

[27] DogariuA, Miles RB. Nitrogen lasing in air[C]// Conference on Lasers and Electro-Optics. San Jose, California, United States: Optical Society of America, 2013: QW1E. 1.

[28] Laurain A, Scheller M, Polynkin P. Low-threshold bidirectional air lasing[J]. Pysical Review Letters, 2014, 113(25): 253901.

[29] Kartashov D, Ališauskas S, Andriukaitis G, et al. Free-space nitrogen gas laser driven by a femtosecond filament[J]. Physical Review A, 2012, 86(3): 033831.

[30] Mitryukovskiy S, Liu Y, Ding P J, et al. Backward stimulated radiation from filaments in nitrogen gas and air pumped by circularly polarized 800 nm femtosecond laser pulses[J]. Optics Express, 2014, 22(11): 12750-12759.

[31] Kartashov D, Ališauskas S, Baltuška A, et al. Remotely pumped stimulated emission at 337 nm in atmospheric nitrogen[J]. Physical Review A, 2013, 88(4): 041805.

[32] Yao J P, Li G H, Jing C R, et al. Remote creation of coherent emissions in air with two-color ultrafast laser pulses[J]. New Journal of Physics, 2013, 15(2): 023046.

[33] Dogariu A, Miles R B. Three-photon femtosecond pumped backwards lasing in argon[J]. Optics Express, 2016, 24(6): A544-A552.

[34] Chu W, Zeng B, Yao J P, et al. Multiwavelength amplified harmonic emissions from carbon dioxide pumped by mid-infrared femtosecond laser pulses[J]. Europhysics Letters, 2012, 97(6): 64004.

[35] Yuan S, Wang T J, Teranishi Y, et al. Lasing action in water vapor induced by ultrashort laser filamentation[J]. Applied Physics Letters, 2013, 102(22): 224102.

[36] DogariuA, Chng TL, Miles RB. Remote backward-propagating water lasing in atmospheric air[C]//Conference on Lasers and Electro-Optics. San Jose, California. Washington, D.C.: OSA, 2016: AW4K. 5.

[37] Hemmer P R, Miles R B, Polynkin P, et al. Standoff spectroscopy via remote generation of a backward-propagating laser beam[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(8): 3130-3134.

[38] Malevich P N, Kartashov D, Pu Z, et al. Ultrafast-laser-induced backward stimulated Raman scattering for tracing atmospheric gases[J]. Optics Express, 2012, 20(17): 18784-18794.

[39] Malevich P N, Maurer R, Kartashov D, et al. Stimulated Raman gas sensing by backward UV lasing from a femtosecond filament[J]. Optics Letters, 2015, 40(11): 2469-2472.

[40] DogariuA. Remote trace detection of hazardous substances using nonlinear optics[C]//Light, Energy and the Environment. Canberra. Washington, D.C.: OSA, 2014: EF4A. 4.

[41] Ni J L, Chu W, Zhang H S, et al. Impulsive rotational Raman scattering of N2 by a remote “air laser” in femtosecond laser filament[J]. Optics Letters, 2014, 39(8): 2250-2253.

[42] Liu Z X, Yao J P, Zhang H S, et al. Extreme nonlinear Raman interaction of an ultrashort nitrogen ion laser with an impulsively excited molecular wavepacket[J]. Physical Review A, 2020, 101(4): 043404.

[43] Yao J P, Chu W, Liu Z X, et al. An anatomy of strong-field ionization-induced air lasing[J]. Applied Physics B, 2018, 124(5): 73.

[44] Traverso A J, Sanchez-Gonzalez R, Yuan L Q, et al. Coherence brightened laser source for atmospheric remote sensing[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(38): 15185-15190.

[45] Mitryukovskiy S, Liu Y, Ding P J, et al. Plasma luminescence from femtosecond filaments in air: evidence for impact excitation with circularly polarized light pulses[J]. Physical Review Letters, 2015, 114(6): 063003.

[46] Zhang H S, Jing C R, Yao J P, et al. Rotational coherence encoded in an “air-laser” spectrum of nitrogen molecular ions in an intense laser field[J]. Physical Review X, 2013, 3(4): 041009.

[47] Liu Y, Ding P J, Lambert G, et al. Recollision-induced superradiance of ionized nitrogen molecules[J]. Physical Review Letters, 2015, 115(13): 133203.

[48] Liu Y, Ding P J, Ibrakovic N, et al. Unexpected sensitivity of nitrogen ions superradiant emission on pump laser wavelength and duration[J]. Physical Review Letters, 2017, 119(20): 203205.

[49] Britton M, Laferrière P, Ko D H, et al. Testing the role of recollision in N2+ air lasing[J]. Physical Review Letters, 2018, 120(13): 133208.

[50] Xu H L, Lötstedt E, Iwasaki A, et al. Sub-10-fs population inversion in N2+ in air lasing through multiple state coupling[J]. Nature Communications, 2015, 6: 8347.

[51] Yao J P, Jiang S C, Chu W, et al. Population redistribution among multiple electronic states of molecular nitrogen ions in strong laser fields[J]. Physical Review Letters, 2016, 116(14): 143007.

[52] Zhang Q, Xie H Q, Li G H, et al. Sub-cycle coherent control of ionic dynamics via transient ionization injection[J]. Communications Physics, 2020, 3: 50.

[53] Chen J M, Yao J P, Zhang H S, et al. Electronic-coherence-mediated molecular nitrogen-ion lasing in a strong laser field[J]. Physical Review A, 2019, 100(3): 031402.

[54] Zhang A, Liang Q Q, Lei M W, et al. Coherent modulation of superradiance from nitrogen ions pumped with femtosecond pulses[J]. Optics Express, 2019, 27(9): 12638-12646.

[55] Mysyrowicz A, Danylo R, Houard A, et al. Lasing without population inversion in N2+[J]. APL Photonics, 2019, 4(11): 110807.

[56] Yao J P, Chu W, Liu Z X, et al. Generation of Raman lasers from nitrogen molecular ions driven by ultraintense laser fields[J]. New Journal of Physics, 2018, 20(3): 033035.

[57] Liu Z X, Yao J P, Chen J M, et al. Near-resonant Raman amplification in the rotational quantum wave packets of nitrogen molecular ions generated by strong field ionization[J]. Physical Review Letters, 2018, 120(8): 083205.

[58] Yuan L Q, Hokr B H, Traverso A J, et al. Theoretical analysis of the coherence-brightened laser in air[J]. Physical Review A, 2013, 87(2): 023826.

[59] Talebpour A, Abdel-Fattah M, Bandrauk A D, et al. Spectroscopy of the gases interacting with intense femtosecond laser pulses[J]. Laser Physics, 2001, 11(1): 68-76.

[60] Kartashov D, Ališauskas S, Pugžlys A, et al. Theory of a filament initiated nitrogen laser[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2015, 48(9): 094016.

[61] Sprangle P, Peñano J, Hafizi B, et al. Remotely induced atmospheric lasing[J]. Applied Physics Letters, 2011, 98(21): 211102.

[62] Shneider M N, Baltuška A, Zheltikov A M. Population inversion of molecular nitrogen in an Ar: N2 mixture by selective resonance-enhanced multiphoton ionization[J]. Journal of Applied Physics, 2011, 110(8): 083112.

[63] Xie H Q, Li G H, Chu W, et al. Backward nitrogen lasing actions induced by femtosecond laser filamentation: influence of duration of gain[J]. New Journal of Physics, 2015, 17(7): 073009.

[64] Itikawa Y. Cross sections for electron collisions with nitrogen molecules[J]. Journal of Physical and Chemical Reference Data, 2006, 35(1): 31-53.

[65] Heard H G. Ultra-violet gas laser at room temperature[J]. Nature, 1963, 200(4907): 667.

[66] Yao J P, Xie H Q, Zeng B, et al. Gain dynamics of a free-space nitrogen laser pumped by circularly polarized femtosecond laser pulses[J]. Optics Express, 2014, 22(16): 19005-19013.

[67] Ding P J, Mitryukovskiy S, Houard A, et al. Backward lasing of air plasma pumped by circularly polarized femtosecond pulses for the saKe of remote sensing (BLACK)[J]. Optics Express, 2014, 22(24): 29964-29977.

[68] Ding P J, Oliva E, Houard A, et al. Lasing dynamics of neutral nitrogen molecules in femtosecond filaments[J]. Physical Review A, 2016, 94(4): 043824.

[69] Ding P J, Escudero J C, Houard A, et al. Nonadiabaticity of cavity-free neutral nitrogen lasing[J]. Physical Review A, 2017, 96(3): 033810.

[70] Ni J L, Chu W, Jing C R, et al. Identification of the physical mechanism of generation of coherent N2+ emissions in air by femtosecond laser excitation[J]. Optics Express, 2013, 21(7): 8746-8752.

[71] Li G H, Jing C R, Zeng B, et al. Signature of superradiance from a nitrogen-gas plasma channel produced by strong-field ionization[J]. Physical Review A, 2014, 89(3): 033833.

[72] Zhong X Q, Miao Z M, Zhang L L, et al. Vibrational and electronic excitation of ionized nitrogen molecules in intense laser fields[J]. Physical Review A, 2017, 96(4): 043422.

[73] Lei M W, Wu C Y, Zhang A, et al. Population inversion in the rotational levels of the superradiant N2+ pumped by femtosecond laser pulses[J]. Optics Express, 2017, 25(4): 4535-4541.

[74] Miao Z M, Zhong X Q, Zhang L L, et al. Stimulated-Raman-scattering-assisted superfluorescence enhancement from ionized nitrogen molecules in 800-nm femtosecond laser fields[J]. Physical Review A, 2018, 98(3): 033402.

[75] Xu B, Jiang S C, Yao J P, et al. Free-space Ν2+ lasers generated in strong laser fields: the role of molecular vibration[J]. Optics Express, 2018, 26(10): 13331-13339.

[76] Arissian L, Kamer B, Rastegari A, et al. Transient gain from N2+ in light filaments[J]. Physical Review A, 2018, 98(5): 053438.

[77] Britton M, Lytova M, Laferrière P, et al. Short- and long-term gain dynamics in N2+ air lasing[J]. Physical Review A, 2019, 100: 013406.

[78] Zheng W, Miao Z M, Zhang L L, et al. Enhanced coherent emission from ionized nitrogen molecules by femtosecond laser pulses[J]. The Journal of Physical Chemistry Letters, 2019, 10(21): 6598-6603.

[79] Xie H Q, Zeng B, Li G H, et al. Coupling of N2+rotational states in an air laser from tunnel-ionized nitrogen molecules[J]. Physical Review A, 2014, 90(4): 042504.

[80] Zeng B, Chu W, Li G H, et al. Real-time observation of dynamics in rotational molecular wave packets by use of air-laser spectroscopy[J]. Physical Review A, 2014, 89(4): 042508.

[81] Liu Y, Brelet Y, Point G, et al. Self-seeded lasing in ionized air pumped by 800 nm femtosecond laser pulses[J]. Optics Express, 2013, 21(19): 22791-22798.

[82] Wang T J, Ju J J, Daigle J F, et al. Self-seeded forward lasing action from a femtosecond Ti∶sapphire laser filament in air[J]. Laser Physics Letters, 2013, 10(12): 125401.

[83] Chu W, Li G H, Xie H Q, et al. A self-induced white light seeding laser in a femtosecond laser filament[J]. Laser Physics Letters, 2014, 11(1): 015301.

[84] Li H L, Hou M Y, Zang H W, et al. Significant enhancement of N2+ lasing by polarization-modulated ultrashort laser pulses[J]. Physical Review Letters, 2019, 122: 013202.

[85] Xie H Q, Zhang Q, Li G H, et al. Vibrational population transfer between electronic states of N2+ in polarization-modulated intense laser fields[J]. Physical Review A, 2019, 100(5): 053419.

[86] Ando T, Lötstedt E, Iwasaki A, et al. Rotational, vibrational, and electronic modulations in N2+ lasing at 391 nm: evidence of coherent B2Σu+-X2Σg+-A2Πu coupling[J]. Physical Review Letters, 2019, 123(20): 203201.

[87] Li H X, Song Q Y, Yao J P, et al. Air lasing from singly ionized N2 driven by bicircular two-color fields[J]. Physical Review A, 2019, 99(5): 053413.

[88] Clerici M, Bruhács A, Faccio D, et al. Terahertz control of air lasing[J]. Physical Review A, 2019, 99(5): 053802.

[89] KartashovD, MöhringJ, AndriukaitisG, et al. Stimulated amplification of UV emission in a femtosecond filament using adaptive control[C]//Conference on Lasers and Electro-Optics 2012, San Jose, California. Washington, D.C.: OSA, 2012: QTh4E. 6.

[90] Point G, Liu Y, Brelet Y, et al. Lasing of ambient air with microjoule pulse energy pumped by a multi-terawatt infrared femtosecond laser[J]. Optics Letters, 2014, 39(7): 1725-1728.

[91] Jing C R, Zhang H S, Chu W, et al. Generation of an air laser at extended distances by femtosecond laser filamentation with telescope optics[J]. Optics Express, 2014, 22(3): 3151-3156.

[92] Jing C R, Yao J P, Li Z T, et al. Free-space air molecular lasing from highly excited vibrational states pumped by circularly-polarized femtosecond laser pulses[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2015, 48(9): 094001.

[93] Zhai K X, Li Z T, Xie H Q, et al. Ultrafast gain dynamics in N2+ lasing from highly excited vibrational states pumped by circularly polarized femtosecond laser pulses[J]. Chinese Optics Letters, 2015, 13(5): 050201.

[94] Andriukaitis G, Möhring J, Kartashov D, et al. Intense, directional UV emission from molecular nitrogen ions in an adaptively controlled femtosecond filament[J]. EPJ Web of Conferences, 2013, 41: 10004.

[95] KartashovD, HaesslerS, AlisauskasS, et al. Transient inversion in rotationally aligned nitrogen ions in a femtosecond filament[C]//Research in Optical Sciences, Messe Berlin, Berlin. Washington, D.C.: OSA, 2014: HTh4B. 5.

[96] Azarm A, Corkum P, Polynkin P. Optical gain in rotationally excited nitrogen molecular ions[J]. Physical Review A, 2017, 96(5): 051401.

[97] Xu H L, Lötstedt E, Ando T, et al. Alignment-dependent population inversion in N2+ in intense few-cycle laser fields[J]. Physical Review A, 2017, 96(4): 041401.

[98] Wan Y X, Xu B, Yao J P, et al. Polarization ellipticity dependence of N2+ air lasing: the role of coupling between the ground state and a photo-excited intermediate state[J]. Journal of the Optical Society of America B, 2019, 36(10): G57-G61.

[99] Fu Y, Lötstedt E, Li H L, et al. Optimization of N2+ lasing through population depletion in the X2Σg+ state using elliptically modulated ultrashort intense laser fields[J]. Physical Review Research, 2020, 2: 012007.

[100] Zhang A, Lei M W, Gao J S, et al. Subfemtosecond-resolved modulation of superfluorescence from ionized nitrogen molecules by 800-nm femtosecond laser pulses[J]. Optics Express, 2019, 27(10): 14922-14930.

[101] Xu B, Yao J P, Wan Y X, et al. Vibrational Raman scattering from coherently excited molecular ions in a strong laser field[J]. Optics Express, 2019, 27(13): 18262-18272.

[102] Arissian L, Kamer B, Rasoulof A. Effect of rotational wave packets on the stimulated emission of nitrogen with light filament[J]. Optics Communications, 2016, 369: 215-219.

[103] Chin S L, Xu H L, Cheng Y, et al. Natural population inversion in a gaseous molecular filament[J]. Chinese Optics Letters, 2013, 11(1): 013201.

[104] Zhang H S, Jing C R, Li G H, et al. Abnormal dependence of strong-field-ionization-induced nitrogen lasing on polarization ellipticity of the driving field[J]. Physical Review A, 2013, 88(6): 063417.

[105] Zhong X Q, Miao Z M, Zhang L L, et al. Optimizing the 391-nm lasing intensity from ionized nitrogen molecules in 800-nm femtosecond laser fields[J]. Physical Review A, 2018, 97(3): 033409.

[106] Wang T J, Daigle J F, Ju J J, et al. Forward lasing action at multiple wavelengths seeded by white light from a femtosecond laser filament in air[J]. Physical Review A, 2013, 88(5): 053429.

[107] Wang P, Wu C Y, Lei M W, et al. Population dynamics of molecular nitrogen initiated by intense femtosecond laser pulses[J]. Physical Review A, 2015, 92(6): 063412.

[108] Ni J L, Chu W, Zhang H S, et al. Harmonic-seeded remote laser emissions in N2-Ar, N2-Xe and N2-Ne mixtures: a comparative study[J]. Optics Express, 2012, 20(19): 20970-20979.

[109] Li Z T, Zeng B, Chu W, et al. Generation of elliptically polarized nitrogen ion laser fields using two-color femtosecond laser pulses[J]. Scientific Reports, 2016, 6: 21504.

[110] Li H L, Zang H W, Su Y, et al. Generation of air lasing at extended distances by coaxial dual-color femtosecond laser pulses[J]. Journal of Optics, 2017, 19(12): 124006.

[111] Jing C R, Xie H Q, Li G H, et al. Dynamic wavelength switching of a remote nitrogen or air laser with chirped femtosecond laser pulses[J]. Laser Physics Letters, 2015, 12(1): 015301.

[112] Tong X M, Zhao Z X, Lin C D. Theory of molecular tunneling ionization[J]. Physical Review A, 2002, 66(3): 033402.

[113] Campbell JB, Wynne RH. Introduction to remote sensing[M]. New York: The Guilford Press, 2011.

[114] Chu W, Li H L, Ni J L, et al. Lasing action induced by femtosecond laser filamentation in ethanol flame for combustion diagnosis[J]. Applied Physics Letters, 2014, 104(9): 091106.

[115] Ding P J, Ruchkina M, Liu Y, et al. Femtosecond two-photon-excited backward lasing of atomic hydrogen in a flame[J]. Optics Letters, 2018, 43(5): 1183-1186.

[116] Ding P J, Ruchkina M. Cont-Bernard D D, et al. Detection of atomic oxygen in a plasma-assisted flame via a backward lasing technique[J]. Optics Letters, 2019, 44(22): 5477-5480.

[117] Ruchkina M, Ding P J, Ehn A, et al. Single-shot, spatially-resolved stand-off detection of atomic hydrogen via backward lasing in flames[J]. Proceedings of the Combustion Institute, 2019, 37(2): 1281-1288.

姚金平, 程亚. 空气激光:强场新效应和远程探测新技术[J]. 中国激光, 2020, 47(5): 0500005. Jinping Yao, Ya Cheng. Air Lasing: Novel Effects in Strong Laser Fields and New Technology in Remote Sensing[J]. Chinese Journal of Lasers, 2020, 47(5): 0500005.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!