强激光与粒子束, 2018, 30 (3): 036002, 网络出版: 2018-05-29  

两种大规模燃耗链求解算法对比分析

Comparison and analysis of two algorithms for solving large depletion chains
作者单位
武汉大学 水力机械过渡过程教育部重点实验室, 武汉 430072
摘要
为严格追踪裂变反应堆中核素成分随燃耗的变化,基于燃耗矩阵法求解燃耗方程,分别采用自主编写的Chebyshev有理近似方法(CRAM)程序和广泛应用的ORIGEN2程序进行大规模燃耗链的点燃耗计算,并对两种算法的相关参数进行对比分析。结果表明:在计算精度方面,CRAM与ORIGEN2程序获得的重要核素的核密度较为一致,个别核素相对误差较大;在计算效率方面,单步燃耗计算ORIGEN2略胜一筹,但CRAM耗时也非常短;在步长稳定性方面,CRAM具有显著优势,而ORIGEN2的统计结果受步长变化的影响较大。
Abstract
In order to trace strictly the changes of nuclide density with burnup in a fission reactor, the independently developed codes by Chebyshev Rational Approximate Method (CRAM) and widely applied ORIGEN2 were adopted to solve large depletion chains to solve depletion equations based on Burnup Matrix Methods. The values are compared and analyzed with the aspects of computational accuracy, efficiency and step stability. The results show that CRAM can provide similar density solutions of important nuclides with a little slower speed and a much better step stability than those of ORIGEN2.
参考文献

[1] 龚建华.深度优先搜索算法及其改进[J].现代电子技术, 2007, 30(22):90-92.(Gong Jianhua. Depth priority algorithm and its improvement. Modern Electronics Technique, 2007, 30(22):90-92)

[2] 吴明宇,王事喜,杨勇,等.基于线性核素链的燃耗算法与蒙特卡罗程序耦合计算[J].强激光与粒子束, 2013, 25(1):248-252.(Wu Mingyu, Wang Shixi, Yang Yong, et al. Monte Carlo program coupling with depletion code based on linear nuclide chain. High Power Laser and Particle Beams, 2013, 25(1):248-252)

[3] 李昊,杨烽,余纲林,等.基于线性子链法的压水堆裂变产物源项一体化计算方法[J].强激光与粒子束, 2017, 29:026002.(Li Hao, Yang Feng, Yu Ganglin, et al. Integrated calculation method for pressurized water reactor design basis source terms based on linear chain method. High Power Laser and Particle Beams, 2017, 29:026002)

[4] Cetenar J. General solution of Bateman equations for nuclear transmutations[J]. Annuals of Nuclear Energy, 2006, 33(7):640-645.

[5] Pusa M. Rational approximations to the matrix exponential in burnup calculations[J]. Nuclear Science & Engineering the Journal of the American Nuclear Society, 2011, 169(2):155-167.

[6] Cody W J, Meinardus G, Varga R S. Chebyshev rational approximations to e-x in [0, +∞) and applications to heat-conduction problems[J]. Journal of Approximation Theory, 1969, 2(1):50-65.

[7] Pusa M, Leppnen J. Computing the matrix exponential in burnup calculations[J]. Nuclear Science & Engineering: the Journal of the American Nuclear Society, 2010, 164(23):140-150.

[8] Pusa M. Correction to partial fraction decomposition coefficients for Chebyshev rational approximation on the negative real axis[J/OL]. ArXiv:1206.2880[math.NA], 2012.

[9] Gonchar A A, Rakhmanov E A. Equilibrium distributions and rate of rational approximation of analytic functions[J]. Mathematics of the USSR-Sbornik, 1989, 62(2):306-352.

[10] Dehart M D. OECD/NEA burnup credit calculational criticality benchmark phaseI-B results[R]. ORNL-6901, 1996.

[11] James R B, and Donald J R. Sparse matrix computations [M]. New York: Academic Press, 1976:3-22.

[12] Pusa M, Leppnen J. Solving linear systems with sparse Gaussian elimination in the Chebyshev Rational Approximation Method[J]. Nuclear Science and Engineering, 2013, 175(3):250-258.

谭杰, 张鹏. 两种大规模燃耗链求解算法对比分析[J]. 强激光与粒子束, 2018, 30(3): 036002. Tan Jie, Zhang Peng. Comparison and analysis of two algorithms for solving large depletion chains[J]. High Power Laser and Particle Beams, 2018, 30(3): 036002.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!