激光与光电子学进展, 2019, 56 (10): 100004, 网络出版: 2019-07-04   

激光增材制造产品缺陷及其处理技术研究现状 下载: 2030次

Research Status of Defects and Defect Treatment Technology for Laser Additive Manufactured Products
作者单位
1 安徽建筑大学机械与电气工程学院, 安徽 合肥 230601
2 安徽春谷3D打印智能装备产业技术研究院, 安徽 芜湖 241000
引用该论文

姚燕生, 汪俊, 陈庆波, 丁晨, 唐建平, 葛张森. 激光增材制造产品缺陷及其处理技术研究现状[J]. 激光与光电子学进展, 2019, 56(10): 100004.

Yansheng Yao, Jun Wang, Qingbo Chen, Chen Ding, Jianping Tang, Zhangsen Ge. Research Status of Defects and Defect Treatment Technology for Laser Additive Manufactured Products[J]. Laser & Optoelectronics Progress, 2019, 56(10): 100004.

参考文献

[1] 卢秉恒, 李涤尘. 3D打印)技术发展[J]. 机械制造与自动化, 2013, 42(4): 1-4.

    Lu B H, Li D C. Development of the additive manufacturing (3D printing) technology[J]. Machine Building & Automation, 2013, 42(4): 1-4.

[2] 杨永强, 陈杰, 宋长辉, 等. 金属零件激光选区熔化技术的现状及进展[J]. 激光与光电子学进展, 2018, 55(1): 011401.

    Yang Y Q, Chen J, Song Z H, et al. Current status and progress on technology of selective laser melting of metal parts[J]. Laser & Optoelectronics Progress, 2018, 55(1): 011401.

[3] 王华明. 高性能大型金属构件激光增材制造: 若干材料基础问题[J]. 航空学报, 2014, 35(10): 2690-2698.

    Wang H M. Materials' fundamental issues of laser additive manufacturing for high-performance large metallic components[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10): 2690-3698.

[4] 陈济轮, 董鹏, 张昆, 等. 金属材料增材制造技术在航天领域的应用前景分析[J]. 电加工与模具, 2014( 1): 66- 69.

    Chen JL, DongP, ZhangK, et al. Potential applications of additive manufacture in metal material for aerospace applications[J]. Electromachining & Mould, 2014( 1): 66- 69.

[5] Zhang L C, Attar H, Calin M, et al. Review on manufacture by selective laser melting and properties of titanium based materials for biomedical applications[J]. Materials & Processing Report, 2016, 31(2): 66-76.

[6] 赵宇辉, 王志国, 龙雨, 等. Inconel 625 镍基高温合金激光增材制造熔池温度影响因素研究[J]. 应用激光, 2015, 35(2): 137-144.

    Zhao Y H, Wang Z G, Long Y, et al. Research on in fluential factor of temperature of molten pool of Inconel 625 superalloy by laser additive manufacturing[J]. Applied Laser, 2015, 35(2): 137-144.

[7] 张小伟. 金属增材制造技术在航空发动机领域的应用[J]. 航空动力学报, 2016, 31(1): 10-16.

    Zhang X W. Application of metal additive manufacturing in aero-engine[J]. Journal of Aerospace Power, 2016, 31(1): 10-16.

[8] LiuR, WangZ, SparksT, et al. Aerospace applications of laser additive manufacturing[M]. Holland: Elsevier, 2017: 351- 371.

[9] 吴楷, 张敬霖, 吴滨, 等. 激光增材制造镍基高温合金研究进展[J]. 钢铁研究学报, 2017, 29(12): 953-959.

    Wu K, Zhang J L, Wu B, et al. Research and development of Ni-based superalloy fabricated by laser additive manufacturing technology[J]. Journal of Iron and Steel Research, 2017, 29(12): 953-959.

[10] 苏亚东, 王向明, 吴斌, 等. 4D打印技术在航空飞行器研制中的应用潜力[J]. 航空材料学报, 2018, 38(2): 59-69.

    Su Y D, Wang X M, Wu B, et al. Application potential of 4D printing technology in development of aircraft[J]. Journal of Aeronautical Materials, 2018, 38(2): 59-69.

[11] 于云, 史廷春, 孙芳芳, 等. 典型无机非金属材料增材制造研究与应用现状[J]. 材料导报, 2016, 30(21): 119-129.

    Yu Y. ShiT C, Sun F F, et al. Study and application status of additive manufacturing of typical inorganic non-metallic materials[J]. Materials Review, 2016, 30(21): 119-129.

[12] 段沐森, 吴凡, 刘瑞雪. 激光增材制造技术在眼科中的应用[J]. 激光与光电子学进展, 2018, 55(1): 011406.

    Duan M S, Wu F, Liu R X, et al. Application of laser additive manufacturing technology in ophthalmology[J]. Laser & Optoelectronics Progress, 2018, 55(1): 011406.

[13] Lusquiños F, Val J D, Arias-González F, et al. Bioceramic 3D implants produced by laser assisted additive manufacturing[J]. Physics Procedia, 2014, 56: 309-316.

[14] Khorasani AM. Machining of spherical component fabricated by selected laser melting, part II: Application of Ti in biomedical[D]. Victoria: Deakin University, 2017.

[15] 马振书, 陈广森, 马东玺, 等. 面向装备应急保障的金属增材制造技术[J]. 兵器材料科学与工程, 2016, 39(6): 119-124.

    Ma Z S, Chen G S, Ma D X, et al. Metal additive manufacturing technologies used in equipment emergency support[J]. Ordnance Material Science and Engineering, 2016, 39(6): 119-124.

[16] Wang M, Lin X, Huang W. Laser additive manufacture of titanium alloys[J]. Materials & Processing Report, 2015, 31(2): 90-97.

[17] 黄春平, 黄硕文, 刘奋成. 金属材料增材制造技术[J]. 金属加工(热加工), 2016( 2): 34- 38.

    Huang CP, Huang SW, Liu FC. Metal material additive manufacturing technology[J]. Metal Working (Thermal processing), 2016( 2): 34- 38.

[18] 王延庆, 沈竞兴, 吴海全. 3D打印材料应用和研究现状[J]. 航空材料学报, 2016, 36(4): 89-98.

    Wang Y Q, Shen J X, Wu H Q. Application and research status of alternative materials for 3D-printing technology[J]. Journal of Aeronautical Materials, 2016, 36(4): 89-98.

[19] Rosa B, Mognol P, Hascoët J. Laser polishing of additive laser manufacturing surfaces[J]. Journal of Laser Applications, 2015, 27(S2): S29102.

[20] Özel T, Altay A, Donmez A, et al. Surface topography investigations on nickel alloy 625 fabricated via laser powder bed fusion[J]. The International Journal of Advanced Manufacturing Technology, 2018, 94: 4451-4458.

[21] Rosa B, Brient A, Samper S, et al. Influence of additive laser manufacturing parameters on surface using density of partially melted particles[J]. Surface Topography: Metrology and Properties, 2016, 4(4): 045002.

[22] Wu A S, Brown D W, Kumar M, et al. An experimental investigation into additive manufacturing-induced residual stresses in 316L stainless steel[J]. Metallurgical & Materials Transactions A, 2014, 45(13): 6260-6270.

[23] 周旭, 周燕, 魏青松, 等. 激光选区熔化近α钛合金开裂机理及抑制研究[J]. 中国机械工程, 2015, 26(20): 2816-2820.

    Zhou X, Zhou Y, Wei Q S, et al. Study on cracking mechanism and inhibiting process of near α Titanium alloy formed by SLM[J]. China Mechanical Engineering, 2015, 26(20): 2816-2820.

[24] 邵玉呈, 陈长军, 张敏, 等. 关于Deloro 40镍基合金粉末激光增材制造成型件裂纹问题研究[J]. 应用激光, 2016, 36(4): 397-402.

    Shao Y C, Chen C J, Zhang M, et al. Research on crack issue of Deloro 40Ni alloys prototype fabricated by laser additive manufacturing[J]. Applied Laser, 2016, 36(4): 397-402.

[25] Shishkovsky I, Saphronov V. Peculiarities of selective laser melting process for permalloy powder[J]. Materials Letters, 2016, 171: 208-211.

[26] Demir A G, Previtali B. Investigation of remelting and preheating in SLM of 18Ni300 maraging steel as corrective and preventive measures for porosity reduction[J]. International Journal of Advanced Manufacturing Technology, 2017, 93: 2697-2709.

[27] Sears JW. Direct laser powder deposition-'State of the Art'[C]∥Proceedings of the 1999 TMS Fall Extraction and Processing Meeting, November 1, 1999, San Diego, California. [S. l. : s. n. ], 1999: 213- 226.

[28] Beaman JJ, Deckard C R. Selective laser sintering with assisted powder handling: US5053090A[P].1990-07-02.

[29] Kruth J P. Froyen L, van Vaerenbergh J, et al. Selective laser melting of iron-based powder[J]. Journal of Materials Processing Technology, 2004, 149(1-3): 616-622.

[30] Vrancken B, Cain V, Knutsen R, et al. Residual stress via the contour method in compact tension specimens produced via selective laser melting[J]. Scripta Materialia, 2014, 87: 29-32.

[31] Mercelis P, Kruth J P. Residual stresses in selective laser sintering and selective laser melting[J]. Rapid Prototyping Journal, 2006, 12(5): 254-265.

[32] Alimardani M, Toyserkani E, Huissoon J P, et al. On the delamination and crack formation in a thin wall fabricated using laser solid freeform fabrication process: an experimental-numerical investigation[J]. Optics & Lasers in Engineering, 2009, 47(11): 1160-1168.

[33] 魏雷, 林鑫, 王猛, 等. 金属激光增材制造过程数值模拟[J]. 航空制造技术, 2017( 13): 16- 25.

    WeiL, LinX, WangM, et al. Numerical simulation on laser additive manufacturing process for metal components[J]. Aeronautical Manufacturing Technology, 2017( 13): 16- 25.

[34] Wu J J, Wang L Z, An X G. Numerical analysis of residual stress evolution of AlSi10Mg manufactured by selective laser melting[J]. Optik, 2017, 137: 65-78.

[35] Dai D H, Gu D D. Tailoring surface quality through mass and momentum transfer modeling using a volume of fluid method in selective laser melting of TiC/AlSi10Mg powder[J]. International Journal of Machine Tools and Manufacture, 2015, 88: 95-107.

[36] Bartkowiak K, Ullrich S, Frick T, et al. New developments of laser processing aluminium alloys via additive manufacturing technique[J]. Physics Procedia, 2011, 12(1): 393-401.

[37] Tillmann W, Schaak C, Nellesen J, et al. Hot isostatic pressing of IN718 components manufactured by selective laser melting[J]. Additive Manufacturing, 2017, 13: 93-102.

[38] 张霜银, 林鑫, 陈静, 等. 热处理对激光立体成形TC4残余应力的影响[J]. 稀有金属材料与工程, 2009, 38(5): 774-778.

    Zhang S Y, Lin X, Chen J, et al. Influence of heat treatment on residual stress of Ti-6Al-4V alloy by laser solid forming[J]. Rare Metal Materials and Engineering, 2009, 38(5): 774-778.

[39] Vilaro T, Colin C, Bartout J D, et al. Microstructural and mechanical approaches of the selective laser melting process applied to a nickel-base superalloy[J]. Materials Science & Engineering A, 2012, 534(1): 446-451.

[40] Zhang S, Gui R Z, Wei Q S, et al. Cracking behavior and formation mechanism of TC4 alloy formed by selective laser melting[J]. Journal of Mechanical Engineering, 2013, 49(23): 21-27.

[41] 张洁, 李帅, 魏青松, 等. 激光选区熔化Inconel 625合金开裂行为及抑制研究[J]. 稀有金属, 2015, 39(11): 961-966.

    Zhang J, Li S, Wei Q S, et al. Cracking behavior and inhibiting process of Inconel 625 alloy formed by selective laser melting[J]. Chinese Journal of Rare Metals, 2015, 39(11): 961-966.

[42] Lai Y B, Liu W J, Zhao J B, et al. Experimental study on residual stress in titanium alloy laser additive manufacturing[J]. Applied Mechanics & Materials, 2013, 431: 20-26.

[43] 杨启云, 吴玉道, 沙菲. 选区激光熔化成形Inconel 625合金的显微组织及力学性能[J]. 机械工程材料, 2016, 40(6): 83-87.

    Yang Q Y, Wu Y D, Sha F. Microstructure and mechanical properties of Inconel 625 alloy manufactured by selective laser melting[J]. Materials for Mechanical Engineering, 2016, 40(6): 83-87.

[44] Amato K N, Gaytan S M, Murr L E, et al. Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting[J]. Acta Materialia, 2012, 60(5): 2229-2239.

[45] Wang Z M, Guan K, Gao M, et al. The microstructure and mechanical properties of deposited-IN718 by selective laser melting[J]. Journal of Alloys & Compounds, 2012, 513(2): 518-523.

[46] Pröbstle M, Neumeier S, Hopfenmüller J, et al. Superior creep strength of a nickel-based superalloy produced by selective laser melting[J]. Materials Science and Engineering: A, 2016, 674: 299-307.

[47] 闫世兴, 董世运, 徐滨士, 等. Fe314合金熔覆层残余应力激光冲击消除机理[J]. 中国激光, 2013, 40(10): 1003004.

    Yan S X, Dong S Y, Xu B S, et al. Mechanics of removing residual stress of Fe314 cladding layers with laser shock processing[J]. Chinese Journal of Lasers, 2013, 40(10): 1003004.

[48] 孙杰, 赵剑峰, 谢娜, 等. 电磁辅助激光熔化沉积的残余应力[J]. 南京航空航天大学学报, 2017( 6): 805- 811.

    SunJ, Zhao JF, XieN, et al. Residual stress of laser melt cladding assisted by electromagnetic field[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2017( 6): 805- 811.

[49] Ding J, Colegrove P, Mehnen J, et al. Thermo-mechanical analysis of wire and arc additive layer manufacturing process on large multi-layer parts[J]. Computational Materials Science, 2011, 50(12): 3315-3322.

[50] Ding J, Colegrove P, Mehnen J, et al. A computationally efficient finite element model of wire and arc additive manufacture[J]. International Journal of Advanced Manufacturing Technology, 2014, 70(1-4): 227-236.

[51] Xu W, Brandt M, Sun S, et al. Additive manufacturing of strong and ductile Ti-6Al-4V by selective laser melting via in situ martensite decomposition[J]. Acta Materialia, 2015, 85: 74-84.

[52] 钦兰云, 王维, 杨光. 超声辅助钛合金激光沉积成形试验研究[J]. 中国激光, 2013, 40(1): 0103001.

    Qin L Y, Wang W, Yang G, et al. Experimental study on ultrasonic-assisted laser metal deposition of Titanium alloy[J]. Chinese Journal of Lasers, 2013, 40(1): 0103001.

[53] 王潭, 张安峰, 梁少端, 等. 超声振动辅助激光金属成形IN718沉积态组织及性能的研究[J]. 中国激光, 2016, 43(11): 1102005.

    Wang T, Zhang A F, Liang S D, et al. Research on as-deposited microstructures and properties of IN718 parts by ultrasonic vibration-assisted laser metal forming[J]. Chinese Journal of Lasers, 2016, 43(11): 1102005.

[54] 袁丁, 高华兵, 孙小婧, 等. 改善金属增材制造材料组织与力学性能的方法与技术[J]. 航空制造技术, 2018, 61(10): 40-48.

    Yuan D, Gao H B, Sun X J, et al. Methods and techniques for improving microstructure and performance of metal additively manufactured materials[J]. Aeronautical Manufacturing Technology, 2018, 61(10): 40-48.

[55] Montazeri M, Ghaini F M. The liquation cracking behavior of IN738LC superalloy during low power Nd∶YAG pulsed laser welding[J]. Materials Characterization, 2012, 67: 65-73.

[56] Ojo O A. Intergranular liquation cracking in heat affected zone of a welded nickel based superalloy in as cast condition[J]. Materials Science and Technology, 2007, 23(10): 1149-1155.

[57] Song B, Dong S J, Zhang B C, et al. Effects of processing parameters on microstructure and mechanical property of selective laser melted Ti6Al4V[J]. Materials & Design, 2012, 35: 120-125.

[58] Gu D D, Hagedorn Y C, Meiners W, et al. Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium[J]. Acta Materialia, 2012, 60(9): 3849-3860.

[59] Kone ná R, Kunz L, Nicoletto G, et al. . Long fatigue crack growth in Inconel 718 produced by selective laser melting[J]. International Journal of Fatigue, 2016, 92: 499-506.

[60] Cloots M, Uggowitzer P J, Wegener K. Investigations on the microstructure and crack formation of IN738LC samples processed by selective laser melting using Gaussian and doughnut profiles[J]. Materials & Design, 2016, 89: 770-784.

[61] 程灵钰, 张升, 魏青松, 等. 激光选区熔化成形不锈钢与纳米羟基磷灰石复合材料的组织及力学性能[J]. 中国有色金属学报, 2014, 24(6): 1510-1517.

    Cheng L Y, Zhang S, Wei Q S, et al. Microstructure and mechanical properties of stainless steel and nano hydroxyapatite composites fabricated by selective laser melting[J]. The Chinese Journal of Nonferrous Metals, 2014, 24(6): 1510-1517.

[62] 顾冬冬, 戴冬华, 夏木建, 等. 金属构件选区激光熔化增材制造控形与控性的跨尺度物理学机制[J]. 南京航空航天大学学报, 2017, 49(5): 645-652.

    Gu D D, Dai D H, Xia M J, et al. Cross-scale physical mechanisms for structure and performance control of metal components processed by selective laser melting additive manufacturing[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2017, 49(5): 645-652.

[63] 侯慧鹏, 梁永朝, 何艳丽, 等. 选区激光熔化Hastelloy-X合金组织演变及拉伸性能[J]. 中国激光, 2017, 44(2): 0202007.

    Hou H P, Liang Y C, He Y L, et al. Microstructural evolution and tensile property of Hastelloy-X alloys produced by selective laser melting[J]. Chinese Journal of Lasers, 2017, 44(2): 0202007.

[64] 刘凯, 王荣, 祁海, 等. 热等静压工艺对SLM成形K4536合金组织与性能的影响[J]. 航空材料学报, 2018, 38(3): 46-51.

    Liu K, Wang R, Qi H, et al. Effects of HIP on microstructure and mechanical properties of K4536 alloy manufactured by SLM[J]. Journal of Aeronautical Materials, 2018, 38(3): 46-51.

[65] Benedetti M, Fontanari V, Bandini M, et al. Low- and high-cycle fatigue resistance of Ti-6Al-4V ELI additively manufactured via selective laser melting: Mean stress and defect sensitivity[J]. International Journal of Fatigue, 2018, 107: 96-109.

[66] 施凡, 赵吉宾, 王志国, 等. K465合金激光增材制造加工工艺研究[J]. 机械科学与技术, 2017, 36(8): 1298-1302.

    Shi F, Zhao J B, Wang Z G, et al. Research on processing technology of superalloy K465 via laser additive manufacturing[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(8): 1298-1302.

[67] 刘正武, 侯春杰, 王联凤, 等. 多激光束选区熔化成形技术研究[J]. 制造技术与机床, 2018( 1): 56- 59.

    Liu ZW, Hou CJ, Wang LF, et al. Study on selective multi-laser beam melting technology[J]. Manufacturing Technology & Machine Tool, 2018( 1): 56- 59.

[68] 黄卫东, 林鑫. 激光立体成形高性能金属零件研究进展[J]. 中国材料进展, 2010, 29(6): 12-27, 49.

    Huang W D, Lin X. Research progress in laser solid forming of high performance metallic component[J]. Materials China, 2010, 29(6): 12-27, 49.

[69] 刘业胜, 韩品连, 胡寿丰, 等. 金属材料激光增材制造技术及在航空发动机上的应用[J]. 航空制造技术, 2014( 10): 62- 67.

    Liu YS, Han PL, Hu SF, et al. Development of laser additive manufacturing with metallic materials and its application in aviation engines[J]. Aeronautical Manufacturing Technology, 2014( 10): 62- 67.

[70] 陈畅源, 邓琦林, 宋建丽. 超声振动对激光熔覆过程的影响[J]. 电加工与模具, 2005( 3): 37- 40.

    Chen CY, Deng QL, Song JL. The influence of ultrasonic vibration on the process of laser cladding[J]. Electromachining & Mould, 2005( 3): 37- 40.

[71] Fan X F, Zhou J, Qiu C J, et al. Experimental study on surface characteristics of laser cladding layer regulated by high-frequency microforging[J]. Journal of Thermal Spray Technology, 2011, 20(3): 456-464.

[72] Tolochko N K, Mozzharov S E, Yadroitsev I A, et al. Balling processes during selective laser treatment of powders[J]. Rapid Prototyping Journal, 2004, 10(2): 78-87.

[73] Yadroitsev I, Bertrand P, Smurov I. Parametric analysis of the selective laser melting process[J]. Applied Surface Science, 2007, 253(19): 8064-8069.

[74] Yadroitsev I, Gusarov A, Yadroitsava I, et al. Single track formation in selective laser melting of metal powders[J]. Journal of Materials Processing Technology, 2010, 210(12): 1624-1631.

[75] Gu D D, Shen Y F. Balling phenomena in direct laser sintering of stainless steel powder: metallurgical mechanisms and control methods[J]. Materials & Design, 2009, 30(8): 2903-2910.

[76] Gu D D, Wang H Q, Zhang G Q. Selective laser melting additive manufacturing of Ti-based nanocomposites: the role of nanopowder[J]. Metallurgical and Materials Transactions A, 2014, 45(1): 464-476.

[77] 李瑞迪. 金属粉末选择性激光熔化成形的关键基础问题研究[D]. 武汉:华中科技大学, 2010: 51- 74.

    Li RD. Research on key basic problems of selective laser melting of metal powder[D]. Wuhan: Huazhong University of Science and Technology, 2010: 51- 74.

[78] Li R D, Liu J H, Shi Y S, et al. Balling behavior of stainless steel and nickel powder during selective laser melting process[J]. The International Journal of Advanced Manufacturing Technology, 2012, 59: 1025-1035.

[79] 吴伟辉, 杨永强, 王迪. 选区激光熔化成型过程的球化现象[J]. 华南理工大学学报(自然科学版), 2010, 38(5): 110-115.

    Wu W H, Yang Y Q, Wang D. Balling phenomenon in selective laser melting process[J]. Journal of South China University of Technology(Natural Science Edition), 2010, 38(5): 110-115.

[80] Wang D, Yang Y Q, Su X B, et al. Study on energy input and its influences on single-track, multi-track, and multi-layer in SLM[J]. The International Journal of Advanced Manufacturing Technology, 2012, 58: 1189-1199.

[81] Dai D H, Gu D D. Effect of metal vaporization behavior on keyhole-mode surface morphology of selective laser melted composites using different protective atmospheres[J]. Applied Surface Science, 2015, 355: 310-319.

[82] 陈洪宇, 顾冬冬, 顾荣海, 等. 5CrNi4Mo模具钢选区激光熔化增材制造组织演变及力学性能研究[J]. 中国激光, 2016, 43(2): 0203003.

    Chen H Y, Gu D D, Gu R H, et al. Microstructure evolution and mechanical properties of 5CrNi4Mo Die steel parts by selective laser melting additive manufacturing[J]. Chinese Journal of Lasers, 2016, 43(2): 0203003.

[83] Qiu C L, Panwisawas C, Ward M, et al. On the role of melt flow into the surface structure and porosity development during selective laser melting[J]. Acta Materialia, 2015, 96: 72-79.

[84] 张格, 王建宏, 张浩. 金属粉末选区激光熔化球化现象研究[J]. 铸造技术, 2017, 38(2): 262-265.

    Zhang G, Wang J H, Zhang H. Research progress of balling phenomena in selective laser melting[J]. Foundry Technology, 2017, 38(2): 262-265.

[85] Zhu H H, Lu L. Fuh J Y H. Development and characterisation of direct laser sintering Cu-based metal powder[J]. Journal of Materials Processing Technology, 2003, 140(1/2/3): 314-317.

[86] 邓诗诗, 杨永强, 李阳, 等. 分区扫描路径规划及其对SLM成型件残余应力分布的影响[J]. 中国激光, 2016, 43(12): 1202003.

    Deng S S, Yang Y Q, Li Y, et al. Planning of area-partition scanning path and its effect on residual stress of SLM molding parts[J]. Chinese Journal of Lasers, 2016, 43(12): 1202003.

[87] Ahsan M N, Pinkerton A J, Moat R J, et al. A comparative study of laser direct metal deposition characteristics using gas and plasma-atomized Ti-6Al-4V powders[J]. Materials Science and Engineering: A, 2011, 528(25/26): 7648-7657.

[88] Shi Q M, Gu D D, Xia M J, et al. Effects of laser processing parameters on thermal behavior and melting/solidification mechanism during selective laser melting of TiC/Inconel 718 composites[J]. Optics & Laser Technology, 2016, 84: 9-22.

[89] 徐锦岗, 陈勇, 陈辉, 等. 工艺参数对H13钢激光选区熔化成形缺陷的影响[J]. 激光与光电子学进展, 2018, 55(4): 041405.

    Xu J G, Chen Y, Chen H, et al. Influence of process parameters on forming defects of H13 steel processed by selective laser melting[J]. Laser & Optoelectronics Progress, 2018, 55(4): 041405.

[90] 仲崇亮. 基于Inconel718的高沉积率激光金属沉积增材制造技术研究[D]. 长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2015.

    Zhong CL. Investigations on high deposition-rate laser metal deposition for additive manufacturing application based on Inconel 718[D]. Changchun:Changchun Institute of Optics, Fine Mechanics and Physics,Chinese Academy of Sciences, 2015.

[91] 仲崇亮, 付金宝, 丁亚林, 等. 高沉积率激光金属沉积Inconel 718的孔隙率控制[J]. 光学精密工程, 2015, 23(11): 3005-3011.

    Zhong C L, Fu J B, Ding Y L, et al. Porosity control of Inconel 718 in high deposition-rate laser metal deposition[J]. Optics and Precision Engineering, 2015, 23(11): 3005-3011.

[92] Leuders S, Thöne M, Riemer A, et al. On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: fatigue resistance and crack growth performance[J]. International Journal of Fatigue, 2013, 48(3): 300-307.

[93] Li L J. Repair of directionally solidified superalloy GTD-111 by laser-engineered net shaping[J]. Journal of Materials Science, 2006, 41(23): 7886-7893.

[94] 李帅, 李崇桂, 张群森, 等. 铝合金激光增材制造技术研究现状与展望[J]. 轻工机械, 2017, 35(3): 98-101.

    Li S, Li C G, Zhang Q S, et al. Research status and prospect of additive manufacturing in laser by aluminum alloy[J]. Light Industry Machinery, 2017, 35(3): 98-101.

[95] 袁学兵, 魏青松, 文世峰, 等. 选择性激光熔化AlSi10Mg合金粉末研究[J]. 热加工工艺, 2014, 43(4): 91-94.

    Yuan X B, Wei Q S, Wen S F, et al. Research on selective laser melting AlSi10Mg alloy powder[J]. Hot Working Technology, 2014, 43(4): 91-94.

[96] Gerling R, Leitgeb R, Schimansky F P. Porosity and argon concentration in gas atomized γ-TiAl powder and hot isostatically pressed compacts[J]. Materials Science and Engineering: A, 1998, 252(2): 239-247.

姚燕生, 汪俊, 陈庆波, 丁晨, 唐建平, 葛张森. 激光增材制造产品缺陷及其处理技术研究现状[J]. 激光与光电子学进展, 2019, 56(10): 100004. Yansheng Yao, Jun Wang, Qingbo Chen, Chen Ding, Jianping Tang, Zhangsen Ge. Research Status of Defects and Defect Treatment Technology for Laser Additive Manufactured Products[J]. Laser & Optoelectronics Progress, 2019, 56(10): 100004.

本文已被 11 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!