光子学报, 2014, 43 (10): 1014003, 网络出版: 2014-11-06   

高能激光环形光束近场和远场传输特性

The Near and Far Field Transmission Characteristics of High Energy Laser Annular Beam
作者单位
西北核技术研究所 激光与物质相互作用国家重点实验室,西安 710024
摘要
为满足高能激光环形光束在近场区和远场区的实际应用需求,从电磁波衍射积分方程出发,推导了环形光束光场分布和远场光强分布表达式,并对光场分布和光强分布进行了分析,得到光强分布与高斯光束的有限孔径大小、中心遮拦比和传输距离的关系.引入大气湍流场景,采用相位屏法对环形光束在不同湍流强度下的大气传输进行了数值模拟和分析,研究了受大气湍流影响远场光斑畸变、光斑破碎、光束扩展和漂移等的增强现象.最后开展了环形光束近场区大气传输数值模拟和实验,结果表明:随着传输距离的增加,光斑中心光强越来越强,光斑逐渐趋于均匀,平均光强呈类高斯分布,近场区环形光束扩散和光斑畸变现象受大气湍流影响而增强.
Abstract
To meet the applications of high energy laser annular beam in near-field and far-field, the expressions of light field distribution and the light intensity distribution in near-field region and far-field from electromagnetic wave diffraction integral equation were obtained and analysed. It can be concluded that the light intensity distribution was decided by the finite aperture, central obscure ratio and transmission distance of gaussian beam. Furthermore, atmospheric turbulence was introduced, by the method of phase screen, the atmospheric transmissions of annular light beam in different turbulence intensities were simulated. Due to the influence of atmospheric turbulence, the consequences of far-field spot distortion, spot crushing, beam expansion and drifting were studied and analysed. Finally, the numerical simulation and experiment of annular light beam atmospheric transmission in near-field were carried out. The results show that the spot central intensity becomes stronger and stronger, the spot intensity gradually tends to be more uniform, and the average intensity is near gaussian distribution with the increase of transmission distance. Because of the influence of atmospheric turbulence, the near-field annular beam dispersion and spot distortion increases also.
参考文献

[1] BAYKAL Y. Log-amplitude and phase fluctuation of higher-order annular laser beams in a turbulent medium[J]. Journal of the Optical Society of America, 2005, 22(4): 672-679.

[2] CAI Y, HE S. Propagation of various dark hollow beams in a turbulent atmosphere[J]. Optics Express, 2006, 14(4): 1353-1367.

[3] ALAVINEJAD M, GHAFARY B, KASHANI F D. Analysis of the propagation of flat-topped beam with various beam orders through turbulent atmosphere[J]. Optics and Lasers in Engineering, 2008, 46(1): 1-5.

[4] 沈锋,姜文汉.环形孔径高斯光束的远场特性[J].强激光与粒子束,2000, 12(3): 257-260.

    SHEN Feng, JIANG Wen-han. Transmitting characteristics of gaussian beam due to the telescope′s center obscure[J]. High Power Laser and Particle Beams, 2000, 12(3): 257-260.

[5] 沈学举,许芹祖,王龙,等.平顶高斯光束经含失调圆孔光阑的失调光学系统的传输特性[J].光子学报, 2011, 39(10):1844-1850.

    SHEN Xue-ju, XU Qin-zu, WANG Long, et al. Propagation properties of flattened gaussian beams passing through an misaligned optical system with misaligned circular aperture[J]. Acta Photonica Sinica, 2011, 39(10): 1844-1850.

[6] 郭硕鸿.电动力学[M].2版.北京:高等教育出版社, 2008.

[7] DUOCASTELLA M, CRAIG B A, Bessel and annular beams for materials processing[J]. Laser Photonics Review, 2012, 6(5): 607-621.

[8] 高明, 南娓娜, 吕宏,等. 湍流对椭圆偏振激光传输中偏振特性的影响分析[J]. 光子学报, 2013, 42(9):1107-1112.

    GAO Ming, NAN Wei-na, L Hong, et al. Analysis on influence of the turbulent on polarization properties of elliptically polarized laser beams in propagation[J]. Acta Photonica Sinica, 2013, 42(9): 1107-1112.

[9] HUANG Yin-bo, WANG Ying-jian. Choosing computing parameters in the numerical simulation of laser propagation effects[J]. Journal of Atmospheric and Environmental Optics, 2007, 2(1): 23-27.

[10] 黄永平,曾安平.厄米-高斯光束在非Kolmogrov大气湍流中的传输性质[J].光子学报,2012,41(7):818-823.

    HUANG Yong-ping, ZENG An-ping. Propagation properties of hermite-gaussian beams in non-kolmogorov turbulence[J]. Acta Photonica Sinica, 2012, 41(7): 818-823.

[11] 赵祥杰,张大勇,王海峰,等.强激光条件下5CB液晶中的激光诱导衍射环现象[J].光子学报,2011,40(8):1166-1171.

    ZHAO Xiang-jie, ZHANG Da-yong, WANG Hai-feng, et al. Research on high power laser induced diffraction ring in 5CB liquid crystal[J]. Acta Photonica Sinica, 2011, 40(8): 1166-1171.

[12] GUY F, BARLOW, ALAN S. Design and analysis of a low-threshod polymer circular-grating distributed-feedback laser[J]. Optical Society of Americal, 2004, 21(12): 2142-2150.

[13] 张慧敏,李新阳.大气湍流畸变相位屏的数值模拟方法研究[J].光电工程,2006, 33(1): 14-19.

    ZHANG Hui-min, LI Xin-yang. Numerical simulation of wavefront phase screen distorted by atmospheric turbulence[J]. Opto-Electronic Engineering, 2006, 33(1): 14-19.

[14] DOU Ling-yu, JI Xiao-ling, LI Pei-yun. Propagation of partially coherent annular beams with decentered field in turbulence along a slant path[J]. Optics Express, 2012, 20(8): 8417-8430.

[15] YUAN Yang-sheng, CHEN Ya-hong, LIANG Chun-hao, et al. Effect of spatial coherence on the scintillation properties of a dark hollow beam in turbulent atmosphere[J]. Applied Physics B, 2013, 110(4): 519-529.

[16] 黄印博,王英俭.激光大气传输数值模拟中对计算参量的选取[J].大气与环境光学学报,2007,2(1):23-27.

    HUANG Yin-bo, WANG Ying-jian. Choosing computing parameters in the numerical simulation of laser propagation effects[J]. Journal of Atmospheric and Environmental Optics, 2007, 2(1): 23-27.

[17] BAYKAL Y. Intensity correlations of general type beam in weakly turbulent atmosphere[J]. Optics & Laser Technology, 2011, 43(7): 1237-1242.

[18] YUAN Yang-sheng, CAI Yang-jian, QU Jun, et al. M2-factor of coherent and partially coherent dark hollow beams propagating in turbulent atmosphere[J]. Optics Express, 2009, 17(20): 17344-17356.

[19] SAGHAFI S, WITHFORD M J, PIPER J A. Characterizing output beams for lasers that use high-magnification unstable resonators[J]. Journal of the Optical Society of America A, 2001, 18(7): 1634-1643.

周松青, 关小伟, 强希文, 瞿谱波. 高能激光环形光束近场和远场传输特性[J]. 光子学报, 2014, 43(10): 1014003. ZHOU Song-qing, GUAN Xiao-wei, QIANG Xi-wen, QU Pu-bo. The Near and Far Field Transmission Characteristics of High Energy Laser Annular Beam[J]. ACTA PHOTONICA SINICA, 2014, 43(10): 1014003.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!