半导体光电, 2020, 41 (3): 384, 网络出版: 2020-06-18   

一种压电半导体纳米线的热电耦合性能研究

Study on Thermoelectric Coupling Characteristics of A Piezoelectric Semiconductor Nanofiber
作者单位
郑州大学 力学与安全工程学院, 郑州 450001
引用该论文

李鑫飞, 张巧云. 一种压电半导体纳米线的热电耦合性能研究[J]. 半导体光电, 2020, 41(3): 384.

LI Xinfei, ZHANG Qiaoyun. Study on Thermoelectric Coupling Characteristics of A Piezoelectric Semiconductor Nanofiber[J]. Semiconductor Optoelectronics, 2020, 41(3): 384.

参考文献

[1] Hutson A R. Piezoelectricity and conductivity in ZnO and CdS[J]. Phys. Rev. Lett., 1960, 4(10): 504-507.

[2] Wang X D, Zhou J, Song J H, et al. Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire[J]. Nano. Lett., 2006, 6(12): 2768-2772.

[3] Gao P X, Song J H, Liu J, et al. Nanowire piezoelectric nanogenerators on plastic substrates as flexible power sources for nanodevices[J]. Adv. Mater. 2007, 19(1): 67-72.

[4] Wang Z L. Towards self-powered nanosystems: from nanogenerators to nanopiezotronics[J]. Adv. Funct. Mater., 2008, 18(22): 3553-3567.

[5] Choi M Y, Choi D, Jin M J, et al. Mechanically powered transparent flexible charge-generating nanodevices with piezoelectric ZnO nanorods[J]. Adv. Mater., 2009, 21(22): 2185-2189.

[6] Buyukkose S, Hernandez-Minguez A, Vratzov B, et al. High-frequency acoustic charge transport in GaAs nanowires[J]. Nanotechnol., 2014, 25(13): 135204.

[7] Wang Zhonglin, Wu Wenzhuo. Piezotronics and piezo-phototronics: Fundamentals and applications[J]. National Sci. Rev., 2014, 1(1): 62-90.

[8] Wang Zhonglin. The new field of nanopiezotronics[J]. Materials Today, 2007, 10(5): 20-28.

[9] Yang Q, Guo X, Wang W H, et al. Enhancing sensitivity of a single ZnO micro-/nanowire photodetector by piezo-phototronic effect[J]. ACS Nano, 2010, 4(10): 6285-6291.

[10] Kazuhiko Y M, Fumio K N. An electroacoustic surface-wave convolver of fabricated from a thin piezoelectric film and a semiconductor[J]. Electron. Commun. Jpn., 2010, 75(12): 21-33.

[11] Sen B, Stroscio M, Dutta M. Piezoelectricity in zincblende polar semiconductor nanowires: A theoretical study[J]. J. Appl. Phys., 2012, 111(5): 054514.1-054514.7.

[12] Gokhale V J, Rais-Zadeh M. Phonon-electron interactions in piezoelectric semiconductor bulk acoustic wave resonators[J]. Scientific Reports, 2014, 4: 5617.

[13] Zhang Chunli, Wang Xiaoyuan, Chen Weiqiu, et al. Carrier distribution and electromechanical fields in a free piezoelectric semiconductor rod[J]. J. Zhejiang University(Science A), 2016, 17(1): 37-44.

[14] Yang G Y, Du J K, Wang J, et al. Electromechanical fields in a nonuniform piezoelectric semiconductor rod[J]. J. of Mechanics of Materials and Structures, 2018, 13(1): 103-120.

[15] Sladek J, Sladek V, Pan E, et al. Fracture analysis in piezoelectric semiconductors under a thermal load[J]. Engineering Fracture Mechanics, 2014, 126: 27-39.

[16] Zhao M H, Pan Y B, Fan C Y, et al. Extended displacement discontinuity method for analysis of cracks in 2D thermal piezoelectric semiconductors[J]. Smart Materials & Structures, 2017, 26(8): 085029.

[17] Zhao M H, Yang C H, Fan C Y, et al. Extended displacement discontinuity method for analysis of penny-shaped cracks in three-dimensional thermal piezoelectric semiconductors[J]. Eur. J. Mech A-Solids, 2018, 70: 23-36.

[18] Jin Z H, Yang J S. Energy conversion efficiency of a piezo-thermoelectric material[J]. J. Electron Mater., 2018, 47(8): 4533-4538.

[19] Jin Z H, Yang J S. Analysis of a sandwiched piezoelectric semiconducting thermoelectric structure[J]. Mech. Res. Commun., 2019, 98: 31-36.

[20] Cheng R R, Zhang C L, Yang J S. Thermally induced carrier distribution in a piezoelectric semiconductor fiber[J]. J. Electron. Mater., 2019, 48(8): 11664.

[21] Wachutka G K. Rigorous thermodynamic treatment of heat generation and conduction in semiconductor[J]. IEEE TCAD, 1990, 9 (11): 1141-1149.

[22] Lindefelt U. Current-density relations for nonisothermal modeling of degenerate heterostructure devices[J]. J. Appl. Phys., 1994, 75(2): 942-957.

[23] Parrott J E. Thermodynamic theory of transport processes in semiconductors[J]. IEEE Trans. on Electron Devices, 1996, 43(5): 809-826.

[24] Wolbert P, Wachutka G K, Krabbenborg B H, et al. Nonisothermal device simulation using the 2D numerical process/device simulator TRENDY and application to SOI-devices[J]. IEEE TCAD, 1994, 13(3): 293-302.

李鑫飞, 张巧云. 一种压电半导体纳米线的热电耦合性能研究[J]. 半导体光电, 2020, 41(3): 384. LI Xinfei, ZHANG Qiaoyun. Study on Thermoelectric Coupling Characteristics of A Piezoelectric Semiconductor Nanofiber[J]. Semiconductor Optoelectronics, 2020, 41(3): 384.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!