半导体光电, 2020, 41 (3): 384, 网络出版: 2020-06-18   

一种压电半导体纳米线的热电耦合性能研究

Study on Thermoelectric Coupling Characteristics of A Piezoelectric Semiconductor Nanofiber
作者单位
郑州大学 力学与安全工程学院, 郑州 450001
摘要
采用有限元分析方法, 研究了一种n型压电半导体纳米线(氧化锌)的电热耦合性能, 分析了外部温度对氧化锌纳米线内部机械场、电场及电流场分布的影响, 并讨论了本构方程线性化对电学参数的影响。研究结果表明, 温度对氧化锌纳米线的电场、载流子浓度和电流密度影响很大, 采用线性本构和非线性本构求得的电场、电子浓度和电流密度最大相差分别为24%, 32%和68%, 基于非线性本构分析压电半导体的电学性能会引起很大误差。该研究结果可为压电半导体器件利用温度调控电场、电流提供理论依据。
Abstract
The thermoelectric coupling characteristics of a kind of n-type piezoelectric semiconductor nanowire (ZnO) were studied with finite element method. The effects of external temperature on internal distribution of mechanical, electric and current fields of the ZnO nanowire were analyzed. And effects of the linearization of the constitutive equation on electric parameters were discussed. The results show that the external temperature greatly affects the electric field, carrier concentration and electric current density. The electric field, carrier concentration and current density derived from linear and nonlinear constitutive relation differ greatly, the maximum difference are 24%, 32% and 68%, respectively. A large error will appear when one adopts linear constitutive relation to analyze electric properties in piezoelectric semiconductors.
参考文献

[1] Hutson A R. Piezoelectricity and conductivity in ZnO and CdS[J]. Phys. Rev. Lett., 1960, 4(10): 504-507.

[2] Wang X D, Zhou J, Song J H, et al. Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire[J]. Nano. Lett., 2006, 6(12): 2768-2772.

[3] Gao P X, Song J H, Liu J, et al. Nanowire piezoelectric nanogenerators on plastic substrates as flexible power sources for nanodevices[J]. Adv. Mater. 2007, 19(1): 67-72.

[4] Wang Z L. Towards self-powered nanosystems: from nanogenerators to nanopiezotronics[J]. Adv. Funct. Mater., 2008, 18(22): 3553-3567.

[5] Choi M Y, Choi D, Jin M J, et al. Mechanically powered transparent flexible charge-generating nanodevices with piezoelectric ZnO nanorods[J]. Adv. Mater., 2009, 21(22): 2185-2189.

[6] Buyukkose S, Hernandez-Minguez A, Vratzov B, et al. High-frequency acoustic charge transport in GaAs nanowires[J]. Nanotechnol., 2014, 25(13): 135204.

[7] Wang Zhonglin, Wu Wenzhuo. Piezotronics and piezo-phototronics: Fundamentals and applications[J]. National Sci. Rev., 2014, 1(1): 62-90.

[8] Wang Zhonglin. The new field of nanopiezotronics[J]. Materials Today, 2007, 10(5): 20-28.

[9] Yang Q, Guo X, Wang W H, et al. Enhancing sensitivity of a single ZnO micro-/nanowire photodetector by piezo-phototronic effect[J]. ACS Nano, 2010, 4(10): 6285-6291.

[10] Kazuhiko Y M, Fumio K N. An electroacoustic surface-wave convolver of fabricated from a thin piezoelectric film and a semiconductor[J]. Electron. Commun. Jpn., 2010, 75(12): 21-33.

[11] Sen B, Stroscio M, Dutta M. Piezoelectricity in zincblende polar semiconductor nanowires: A theoretical study[J]. J. Appl. Phys., 2012, 111(5): 054514.1-054514.7.

[12] Gokhale V J, Rais-Zadeh M. Phonon-electron interactions in piezoelectric semiconductor bulk acoustic wave resonators[J]. Scientific Reports, 2014, 4: 5617.

[13] Zhang Chunli, Wang Xiaoyuan, Chen Weiqiu, et al. Carrier distribution and electromechanical fields in a free piezoelectric semiconductor rod[J]. J. Zhejiang University(Science A), 2016, 17(1): 37-44.

[14] Yang G Y, Du J K, Wang J, et al. Electromechanical fields in a nonuniform piezoelectric semiconductor rod[J]. J. of Mechanics of Materials and Structures, 2018, 13(1): 103-120.

[15] Sladek J, Sladek V, Pan E, et al. Fracture analysis in piezoelectric semiconductors under a thermal load[J]. Engineering Fracture Mechanics, 2014, 126: 27-39.

[16] Zhao M H, Pan Y B, Fan C Y, et al. Extended displacement discontinuity method for analysis of cracks in 2D thermal piezoelectric semiconductors[J]. Smart Materials & Structures, 2017, 26(8): 085029.

[17] Zhao M H, Yang C H, Fan C Y, et al. Extended displacement discontinuity method for analysis of penny-shaped cracks in three-dimensional thermal piezoelectric semiconductors[J]. Eur. J. Mech A-Solids, 2018, 70: 23-36.

[18] Jin Z H, Yang J S. Energy conversion efficiency of a piezo-thermoelectric material[J]. J. Electron Mater., 2018, 47(8): 4533-4538.

[19] Jin Z H, Yang J S. Analysis of a sandwiched piezoelectric semiconducting thermoelectric structure[J]. Mech. Res. Commun., 2019, 98: 31-36.

[20] Cheng R R, Zhang C L, Yang J S. Thermally induced carrier distribution in a piezoelectric semiconductor fiber[J]. J. Electron. Mater., 2019, 48(8): 11664.

[21] Wachutka G K. Rigorous thermodynamic treatment of heat generation and conduction in semiconductor[J]. IEEE TCAD, 1990, 9 (11): 1141-1149.

[22] Lindefelt U. Current-density relations for nonisothermal modeling of degenerate heterostructure devices[J]. J. Appl. Phys., 1994, 75(2): 942-957.

[23] Parrott J E. Thermodynamic theory of transport processes in semiconductors[J]. IEEE Trans. on Electron Devices, 1996, 43(5): 809-826.

[24] Wolbert P, Wachutka G K, Krabbenborg B H, et al. Nonisothermal device simulation using the 2D numerical process/device simulator TRENDY and application to SOI-devices[J]. IEEE TCAD, 1994, 13(3): 293-302.

李鑫飞, 张巧云. 一种压电半导体纳米线的热电耦合性能研究[J]. 半导体光电, 2020, 41(3): 384. LI Xinfei, ZHANG Qiaoyun. Study on Thermoelectric Coupling Characteristics of A Piezoelectric Semiconductor Nanofiber[J]. Semiconductor Optoelectronics, 2020, 41(3): 384.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!