发光学报, 2017, 38 (7): 936, 网络出版: 2017-07-05   

ZnO/Cu2O异质结纳米阵列制备及光催化性能

Preparation and Photocatalytic Property of ZnO/Cu2O Heterostructured Nanorod Arrays
作者单位
1 常州大学 怀德学院, 江苏 常州 213016
2 江苏理工学院 材料工程学院, 江苏 常州 213001
3 常州大学 数理学院, 江苏 常州 213164
引用该论文

何祖明, 夏咏梅, 唐斌, 江兴方, 黄正逸. ZnO/Cu2O异质结纳米阵列制备及光催化性能[J]. 发光学报, 2017, 38(7): 936.

HE Zu-ming, XIA Yong-mei, TANG Bin, JIANG Xing-fang, HUANG Zheng-yi. Preparation and Photocatalytic Property of ZnO/Cu2O Heterostructured Nanorod Arrays[J]. Chinese Journal of Luminescence, 2017, 38(7): 936.

参考文献

[1] BHIRUD A P, SATHAYE S D, WAICHAL R P, et al.. In-situ preparation of N-TiO2/graphene nanocomposite and its enhanced photocatalytic hydrogen production by H2S splitting under solar light [J]. Nanoscale, 2015, 7(11): 5023-5034.

[2] FANG X, LI Y, ZHANG S, et al.. The dye adsorption optimization of ZnO nanorod-based dye-sensitized solar cells [J]. Solar Energy, 2014, 105: 14-19.

[3] XIA Y M, ZHANG Y F, YU X Q, et al.. Low-temperature solution growth of ZnO nanocone/highly oriented nanorod arrays on copper [J]. J. Phys. Chem. B, 2014, 118(41): 12002-12007.

[4] XIONG J Y, LI Z, CHEN J, et al.. Facile synthesis of highly efficient one-dimensional plasmonic photocatalysts through Ag@Cu2O core-shell heteronanowires [J]. ACS Appl. Mater. Interf., 2014, 6(18): 15716-15725.

[5] CHATTERJEE S, SAHA S K, PAL A J. Formation of all-oxide solar cells in atmospheric condition based on Cu2O thin-films grown through SILAR technique [J]. Solar Energy Mater. Solar Cells, 2016, 147: 17-26.

[6] ZHAO W Y, FU W Y, YANG H B, et al.. Electrodeposition of Cu2O films and their photoelectrochemical properties [J]. Cryst Eng. Comm., 2011, 13(8): 2871-2877.

[7] MINAMI T, MIYATA T, NISHI Y. Relationship between the electrical properties of the n-oxide and p-Cu2O layers and the photovoltaic properties of Cu2O-based heterojunction solar cells [J]. Solar Energy Mater. Solar Cells, 2016, 147: 85-93.

[8] NIU W Z, ZHOU M Y, YE Z Z, et al.. Photoresponse enhancement of Cu2O solar cell with sulfur-doped ZnO buffer layer to mediate the interfacial band alignment [J]. Solar Energy Mater. Solar Cells, 2016, 144: 717-723.

[9] BAI Z M, ZHANG Y H. Self-powered UV-visible photodetectors based on ZnO/Cu2O nanowire/electrolyte heterojunctions [J]. J. Alloys Compd., 2016, 675: 325-330.

[10] LIU J S, ZHU K J, SHENG B B, et al.. Low-temperature solid-state synthesis and optical properties of ZnO/CdS nanocomposites [J]. J. Alloys Compd., 2015, 618: 67-72.

[11] HABIBI M H, RAHMATI M H. The effect of operational parameters on the photocatalytic degradation of Congo red organic dye using ZnO-CdS core-shell nano-structure coated on glass by Doctor Blade method [J]. Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 2015, 137: 160-164.

[12] 娄慧慧, 娄天军, 崔晓瑞, 等. PbS/CdS纳米晶共敏化ZnO纳米线太阳能电池的性能研究 [J]. 人工晶体学报, 2014, 43(3): 614-618.

    LOU H H, LOU T J, CUI X R, et al.. Properties of PbS/CdS nanocrystalline co-sensitized ZnO nanowires solar cells [J]. J. Synth. Cryst., 2014, 43(3): 614-618. (in Chinese)

[13] AWASTHI G P, ADHIKARI S P, KO S, et al.. Facile synthesis of ZnO flowers modi fied graphene like MoS2 sheets for enhanced visible-light-driven photocatalytic activity and antibacterial properties [J]. J. Alloys Compd., 2016, 682: 208-215.

[14] ABD-ELLAH M, THOMAS J P, ZHANG L, et al.. Enhancement of solar cell performance of p-Cu2O/n-ZnO-nanotube and nanorod heterojunction devices [J]. Solar Energy Mater. Solar Cells, 2016, 152: 87-93.

[15] GUO D Y, JU Y. Preparation of Cu2O/ZnO p-n junction by thermal oxidation method for solar cell application [J]. Mater. Today Proc., 2016, 3(2): 350-353.

[16] HE Z M, XIA Y M, TANG B, et al.. Fabrication and photocatalytic property of ZnO/Cu2O core-shell nanocomposites [J]. Mater. Lett., 2016, 184: 148-151.

[17] ELFADILL N G, HASHIM M R, SARON K M A, et al.. Ultraviolet-visible photo-response of p-Cu2O/n-ZnO heterojunction prepared on flexible (PET) substrate [J]. Mater. Chem. Phys., 2015, 156: 54-60.

[18] XIA Y M, ZHANG Y F, YU X Q, et al.. Direct solution phase fabrication of ZnO nanostructure arrays on copper at near room temperature [J]. Cryst Eng. Comm., 2014, 16(24): 5394-5401.

[19] 刘阳, 马骥, 唐斌, 等. 金属电阻率Cu/Cu2O半导体弥散复合薄膜的制备及其偏压效应 [J]. 功能材料, 2016, 47(3): 3205-3209.

    LIU Y, MA J, TANG B , et al.. Fabrication of semiconducting Cu/Cu2O dispersive composite thin films with metallic resistivity and the bias voltage effect [J]. J. Funct. Mater., 2016, 47(3): 3205-3209. (in Chinese)

[20] XING X Y, ZHENG K B, XU H H, et al.. Synthesis and electrical properties of ZnO nanowires [J]. Micron, 2006, 37(4): 370-373.

[21] TAKEHIRO N, YAMADA M, TANAKA K I, et al.. Oxidation states of submonolayer copper islands on a Pd(111) surface exposed to oxygen [J]. Surf. Sci., 1999, 441(1): 199-205.

[22] MA J F, WANG K, LI L Y, et al..Visible-light photocatalytic decolorization of Orange Ⅱ on Cu2O/ZnO nanocomposites [J]. Ceram. Int., 2015, 41(2): 2050-2056.

[23] MESSAOUDI O, MAKHLOUF H, SOUISSI A, et al.. Synthesis and characterization of ZnO/Cu2O core-shell nanowires grown by two-step electrodeposition method [J]. Appl. Surf. Sci., 2015, 343: 148-152.

[24] WANG L D, ZHAO Y X, WANG G H, et al.. Enhancing the efficiency of ZnO/Cu2O inorganic nanostructure solar cells simply by CdS quantum dots [J]. Solar Energy Mater. Solar Cells, 2014, 130: 387-392.

[25] BRAYEK A, GHOUL M, SOUISSI A, et al.. Structural and optical properties of ZnS/ZnO core/shell nanowires grown on ITO glass [J]. Mater. Lett., 2014, 129: 142-145.

[26] LI N, LIU G, ZHEN C, et al.. Battery performance and photocatalytic activity of mesoporous anatase TiO2 nanospheres/graphene composites by template-free self-assembly [J]. Adv. Funct. Mater., 2011, 21(9): 1717-1722.

[27] PAN X, ZHAO Y, LIU S, et al.. Comparing graphene-TiO2 nanowire and graphene-TiO2 nanoparticle composite photocatalysts [J]. ACS Appl. Mater. Interf., 2012, 4(8): 3944-3950.

[28] ZHENG D F, PU X P, DU K P, et al.. Combustion synthesis of magnetic Ag/NiFe2O4 composites with enhanced visible-light photocatalytic properties [J]. Sep. Purif. Technol., 2014, 137: 82-85.

[29] JIANG T F, XIE T F, CHEN L P, et al.. Carrier concentration-dependent electron transfer in Cu2O/ZnO nanorod arrays and their photocatalytic performance [J]. Nanoscale, 2013, 5(7): 2938-2944.

[30] LIU H, WANG J, FAN X M, et al.. Synthesis of Cu2O/T-ZnOW nanocompound and characterization of its photocatalytic activity and stability property under UV irradiation [J]. Mater. Sci. Eng. B, 2013, 178(2): 158-166.

[31] XU C, CAO L X, SU G, et al.. Preparation of ZnO/Cu2O compound photocatalyst and application in treating organic dyes [J]. J. Hazard. Mater., 2010, 176(1-3): 807-813.

[32] MOHAMED R M, AAZAM E S. Preparation and characterization of core-shell polyaniline/mesoporous Cu2O nanocomposites for the photocatalytic oxidation of thiophene [J]. Appl. Catal. A: Gen., 2014, 480: 100-107.

[33] SHI J, LI J, HUANG X J, et al.. Synthesis and enhanced photocatalytic activity of regularly shaped Cu2O nanowire polyhedral [J]. Nano Res, 2011, 4(5): 448-459.

[34] SHANG S Q, JIAO X L, CHEN D R. Template-free fabrication of TiO2 hollow spheres and their photocatalytic properties [J]. ACS Appl. Mater. Interfaces, 2012, 4(2): 860-865.

[35] ZHU H Y, JING R, FU Y Q, et al.. Novel multifunctional NiFe2O4/ZnO hybrids for dye removal by adsorption, photocatalysis and magnetic separation [J]. Appl. Surf. Sci., 2016, 369: 1-10.

[36] LIN Y B, LIN Y, MENG Y M, et al.. CdS quantum dots sensitized ZnO spheres via ZnS overlayer to improve efficiency for quantum dots sensitized solar cells [J]. Ceram. Int., 2014, 40(6): 8157-8163.

何祖明, 夏咏梅, 唐斌, 江兴方, 黄正逸. ZnO/Cu2O异质结纳米阵列制备及光催化性能[J]. 发光学报, 2017, 38(7): 936. HE Zu-ming, XIA Yong-mei, TANG Bin, JIANG Xing-fang, HUANG Zheng-yi. Preparation and Photocatalytic Property of ZnO/Cu2O Heterostructured Nanorod Arrays[J]. Chinese Journal of Luminescence, 2017, 38(7): 936.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!