光学学报, 2020, 40 (11): 1117001, 网络出版: 2020-06-10   

一种基于功能化修饰磁性纳米颗粒的石墨烯基光学生物传感器 下载: 1183次

Graphene-Based Optical Biosensor Using Functionalized Magnetic Nanoparticles
作者单位
1 南开大学现代光学研究所, 天津 300071
2 天津市人民医院, 天津 300121
3 深圳大学深圳微尺度光信息技术重点实验室纳米光子学研究中心, 广东 深圳 518060
引用该论文

张慧琴, 孙立勋, 杨艺哲, 吴晓静, 杨勇, 朱思伟, 袁小聪. 一种基于功能化修饰磁性纳米颗粒的石墨烯基光学生物传感器[J]. 光学学报, 2020, 40(11): 1117001.

Huiqin Zhang, Lixun Sun, Yizhe Yang, Xiaojing Wu, Yong Yang, Siwei Zhu, Xiaocong Yuan. Graphene-Based Optical Biosensor Using Functionalized Magnetic Nanoparticles[J]. Acta Optica Sinica, 2020, 40(11): 1117001.

参考文献

[1] Bao Q L, Zhang H, Wang B, et al. Broadband graphene polarizer[J]. Nature Photonics, 2011, 5(7): 411-415.

[2] Ye Q, Wang J, Liu Z B, et al. Polarization-dependent optical absorption of graphene under total internal reflection[J]. Applied Physics Letters, 2013, 102(2): 021912.

[3] Xing F, Liu Z B, Deng Z C, et al. Sensitive real-time monitoring of refractive indexes using a novel graphene-based optical sensor[J]. Scientific Reports, 2012, 2: 908.

[4] Peterson A W, Halter M, Tona A, et al. High resolution surface plasmon resonance imaging for single cells[J]. BMC Cell Biology, 2014, 15: 35.

[5] 陈强华, 刘景海, 罗会甫, 等. 一种基于表面等离子共振的液体折射率测量系统[J]. 光学学报, 2015, 35(5): 0512002.

    Chen Q H, Liu J H, Luo H F, et al. Refractive index measurement system of liquid based on surface plasmon resonance[J]. Acta Optica Sinica, 2015, 35(5): 0512002.

[6] Sun L X, Zhang Y Q, Wang Y J, et al. Real-time subcellular imaging based on graphene biosensors[J]. Nanoscale, 2018, 10(4): 1759-1765.

[7] Wang Y J, Zhang S W, Xu T, et al. Ultra-sensitive and ultra-fast detection of whole unlabeled living cancer cell responses to paclitaxel with a graphene-based biosensor[J]. Sensors and Actuators B: Chemical, 2018, 263: 417-425.

[8] Jiang W S, Xin W, Xun S, et al. Reduced graphene oxide-based optical sensor for detecting specific protein[J]. Sensors and Actuators B: Chemical, 2017, 249: 142-148.

[9] 刘璐, 吴晓静, 孙伽略, 等. 大穿透深度折射率传感器对活细胞药物敏感性的研究[J]. 光学学报, 2018, 38(11): 1104001.

    Liu L, Wu X J, Sun J L, et al. Study on large penetration depth refractive index sensor to drug susceptibility of living cells[J]. Acta Optica Sinica, 2018, 38(11): 1104001.

[10] Bianco M. Sonato A, de Girolamo A, et al. An aptamer-based SPR-polarization platform for high sensitive OTA detection[J]. Sensors and Actuators B: Chemical, 2017, 241: 314-320.

[11] Zhang H, Sun Y, Wang J, et al. Preparation and application of novel nanocomposites of magnetic-Au nanorod in SPR biosensor[J]. Biosensors and Bioelectronics, 2012, 34(1): 137-143.

[12] Xing F, Zhang S, Yang Y, et al. Chemically modified graphene films for high-performance optical NO2 sensors[J]. The Analyst, 2016, 141(15): 4725-4732.

[13] Singamaneni S, Bliznyuk V N, Binek C, et al. Magnetic nanoparticles: recent advances in synthesis, self-assembly and applications[J]. Journal of Materials Chemistry, 2011, 21(42): 16819-16845.

[14] Miao P, Tang Y G, Wang L. DNA modified Fe3O4@Au magnetic nanoparticles as selective probes for simultaneous detection of heavy metal ions[J]. ACS Applied Materials & Interfaces, 2017, 9(4): 3940-3947.

[15] Chen H X, Qi F J, Zhou H J, et al. Fe3O4@Au nanoparticles as a means of signal enhancement in surface plasmon resonance spectroscopy for thrombin detection[J]. Sensors and Actuators B: Chemical, 2015, 212: 505-511.

[16] Cai H D, Li K G, Shen M W, et al. Facile assembly of Fe3O4@Au nanocomposite particles for dual mode magnetic resonance and computed tomography imaging applications[J]. Journal of Materials Chemistry, 2012, 22(30): 15110-15120.

[17] 李春梅. 金纳米与磁纳米颗粒及其复合物的生物传感和细胞成像研究[D]. 重庆: 西南大学, 2013: 69- 87.

    Li CM. Applications of AuNPs, Fe3O4 Nanoparticles and Fe3O4@Au nanorose in biosensing and cell imaging[D]. Chongqing: Southwest University, 2013: 69- 87.

[18] Guo X W. Fe3O4@Au nanoparticles enhanced surface plasmon resonance for ultrasensitive immunoassay[J]. Sensors and Actuators B: Chemical, 2014, 205: 276-280.

[19] Sun L X, Zhang Y Q, Wang Y J, et al. Refractive index mapping of single cells with a graphene-based optical sensor[J]. Sensors and Actuators B: Chemical, 2017, 242: 41-46.

[20] Sun L X, Zhang Y Q, Zhang C L, et al. Refractive index sensing and imaging based on polarization-sensitive graphene[J]. Optics Express, 2019, 27(20): 29273-29286.

[21] Xing F, Meng G X, Zhang Q, et al. Ultrasensitive flow sensing of a single cell using graphene-based optical sensors[J]. Nano Letters, 2014, 14(6): 3563-3569.

[22] Yang Y, Sun J L, Liu L, et al. Research of detection depth for graphene-based optical sensor[J]. Optics Communications, 2018, 411: 143-147.

[23] Chikazawa J I, Uwada T, Furube A, et al. Flow-induced transport via optical heating of a single gold nanoparticle[J]. The Journal of Physical Chemistry C, 2019, 123(7): 4512-4522.

[24] Zhang H, Zhong X, Xu J J, et al. Fe3O4/polypyrrole/Au nanocomposites with core/shell/shell structure: synthesis, characterization, and their electrochemical properties[J]. Langmuir, 2008, 24(23): 13748-13752.

[25] Meulenberg E P. Immunochemical methods for ochratoxin A detection: a review[J]. Toxins, 2012, 4(4): 244-266.

[26] Mateo R, Medina Á, Mateo E M, et al. An overview of ochratoxin A in beer and wine[J]. International Journal of Food Microbiology, 2007, 119(1/2): 79-83.

[27] Al Rubaye A, Nabok A, Catanante G, et al. Detection of ochratoxin A in aptamer assay using total internal reflection ellipsometry[J]. Sensors and Actuators B: Chemical, 2018, 263: 248-251.

张慧琴, 孙立勋, 杨艺哲, 吴晓静, 杨勇, 朱思伟, 袁小聪. 一种基于功能化修饰磁性纳米颗粒的石墨烯基光学生物传感器[J]. 光学学报, 2020, 40(11): 1117001. Huiqin Zhang, Lixun Sun, Yizhe Yang, Xiaojing Wu, Yong Yang, Siwei Zhu, Xiaocong Yuan. Graphene-Based Optical Biosensor Using Functionalized Magnetic Nanoparticles[J]. Acta Optica Sinica, 2020, 40(11): 1117001.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!