人工晶体学报, 2020, 49 (2): 312, 网络出版: 2020-06-15   

Dy掺杂Ca1-xDyxMnO3(x=0, 0.02, 0.03, 0.05, 0.10)热电材料的Rietveld精修及高温热电性能研究

Study on Rietveld Refinement and High-temperature Thermoelectric Properties of Dy Doped Ca1-x Dyx MnO3 (x=0, 0.02, 0.03, 0.05, 0.10)Thermoelectric Materials
作者单位
贵州大学化学与化工学院,贵阳 550025
摘要
本文采用共沉淀法制备Dy掺杂Ca1-xDyxMnO3(x=0, 0.02, 0.03, 0.05, 0.10)热电材料,通过X射线衍射对热电材料进行物相结构表征,利用Rietveld粉 末衍射全谱拟合方法对X射线衍射数据进行精修得到Dy掺杂Ca1-xDyxMnO3(x=0, 0.02, 0.03, 0.05, 0.10)热电材料的精细结构,利用标准四探针法测试高温热 电性能。Rietveld精修结果表明,随着Dy掺杂量的增加,CaMnO3样品的晶胞参数及晶胞体积逐渐变大。对应的电阻率测量结果表明,掺杂样品的电阻率随着Dy 掺杂量的增加而减小。其中Ca0.9Dy0.1MnO3的室温电阻率最低,为6.7×10-5 Ω?m,是未掺杂CaMnO3的1/6倍。
Abstract
Dy doped Ca1-xDyxMnO3(x=0, 0.02, 0.03, 0.05, 0.10) thermoelectric materials were prepared by coprecipitation. The phase structure was determined by X-ray diffraction. Fine structure of Dy doped Ca1-xDyxMnO3(x=0,0.02, 0.03, 0.05, 0.10) thermoelectric materials were obtained by refining data with Rietveld powder diffraction full spectrum fitting method. And the high-temperature thermoelectric properties were determined by four probe electrodes. Rietveld refinement results show that the cell parameters and cell volume of CaMnO3 samples gradually increase with the increase of Dy doping. The corresponding resistivity results show that the resistivity of the doped samples decreases with the increase of Dy doping. The room temperature resistivity of Ca0.9Dy0.1MnO3 is the lowest, which is 6.7×10-5 Ω ?m, 1/6 times of that of undoped CaMnO3.
参考文献

[1] Bell L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems [J].Science,2008,321:1457-1461.

    Bell L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems [J].Science,2008,321:1457-1461.

[2] Minnich A J,Dresselhaus M S,Ren Z F,et al. Bulk nanostructured thermoelectric materials: current research and future prospects[J].Energy & Environmental Science,2008,2:466-479.

    Minnich A J,Dresselhaus M S,Ren Z F,et al. Bulk nanostructured thermoelectric materials: current research and future prospects[J].Energy & Environmental Science,2008,2:466-479.

[3] 张飞鹏,张光磊,秦国强,等. CaMnO3晶体材料力学性能的研究[J].人工晶体学报,2019,48(2):213-218.

    张飞鹏,张光磊,秦国强,等. CaMnO3晶体材料力学性能的研究[J].人工晶体学报,2019,48(2):213-218.

[4] Snyder G J,Toberer E S. Complex thermoelectric materials[J].Nature materials,2008,7:105-114.

    Snyder G J,Toberer E S. Complex thermoelectric materials[J].Nature materials,2008,7:105-114.

[5] Zhan B,Lan J,Liu Y,et al. High temperature thermoelectric properties of Dy-doped CaMnO3 ceramics[J].Journal of Materials Science Technology,2014,30(8):821-825.

    Zhan B,Lan J,Liu Y,et al. High temperature thermoelectric properties of Dy-doped CaMnO3 ceramics[J].Journal of Materials Science Technology,2014,30(8):821-825.

[6] Kabir R,Tian R,Zhang T,et al. Role of Bi doping in thermoelectric properties of CaMnO3[J].Journal of Alloys and Compounds,2015,628:347-351.

    Kabir R,Tian R,Zhang T,et al. Role of Bi doping in thermoelectric properties of CaMnO3[J].Journal of Alloys and Compounds,2015,628:347-351.

[7] Young R A,Willes D B. Profile shape functions in Rietveld analysis[J].Journal of Applied Crystallography,1982,15:430-438.

    Young R A,Willes D B. Profile shape functions in Rietveld analysis[J].Journal of Applied Crystallography,1982,15:430-438.

[8] Nag A,D'Sa F,Shubha V. Doping induced high temperature transport properties of Ca1-xGdxMn1-xNbxO3 (0≤x≤0.1)[J].Materials Chemistry and Physics,2015,151:119-125.

    Nag A,D'Sa F,Shubha V. Doping induced high temperature transport properties of Ca1-xGdxMn1-xNbxO3 (0≤x≤0.1)[J].Materials Chemistry and Physics,2015,151:119-125.

[9] 马礼敦.近代X射线多晶体衍射——实验技术与数据分析[M].北京:化学工业出版社,2004:399-421.

    马礼敦.近代X射线多晶体衍射——实验技术与数据分析[M].北京:化学工业出版社,2004:399-421.

[10] 刘粤惠,刘平安.X射线衍射分析原理与应用[M].北京:化学工业出版社,2003:216-217.

    刘粤惠,刘平安.X射线衍射分析原理与应用[M].北京:化学工业出版社,2003:216-217.

[11] 占望鹏.基于参数排序空间的粉末衍射晶体结构精修自动化方法[D].上海:上海大学,2016.

    占望鹏.基于参数排序空间的粉末衍射晶体结构精修自动化方法[D].上海:上海大学,2016.

[12] Simes A Z,Garcia F G,Riccardi C d S. Rietveld analysis and electrical properties of lanthanum doped BiFeO3 ceramics[J].Materials Chemistry and Physics,2009,116:305-309.

    Simes A Z,Garcia F G,Riccardi C d S. Rietveld analysis and electrical properties of lanthanum doped BiFeO3 ceramics[J].Materials Chemistry and Physics,2009,116:305-309.

[13] Li G,Zhao Y,Wei Y,et al. Novel yellowish-green light-emitting Ca10(PO4)6O∶Ce3+ phosphor: structural refinement,preferential site occupancy and color tuning[J].Chemical Communications,2016,52(16):3376-3379.

    Li G,Zhao Y,Wei Y,et al. Novel yellowish-green light-emitting Ca10(PO4)6O∶Ce3+ phosphor: structural refinement,preferential site occupancy and color tuning[J].Chemical Communications,2016,52(16):3376-3379.

[14] Flahaut D,Mihara T,Funahashi R,et al. Thermoelectrical properties of A-site substituted Ca1-xRexMnO3 system[J].Journal of Applied Physics,2006,100:084911-084914.

    Flahaut D,Mihara T,Funahashi R,et al. Thermoelectrical properties of A-site substituted Ca1-xRexMnO3 system[J].Journal of Applied Physics,2006,100:084911-084914.

[15] Yang T,Cheng T. Effects of La,Sm and Yb doping on thermoelectric properties of Ca0.98Er0.02MnO3 at high temperature[J].RSC Adv.,2017,7:44659-44644.

    Yang T,Cheng T. Effects of La,Sm and Yb doping on thermoelectric properties of Ca0.98Er0.02MnO3 at high temperature[J].RSC Adv.,2017,7:44659-44644.

[16] Zhang F P,Lu Q M,Zhang X,et al. First principle investigation of electronic structure of CaMnO3 thermoelectric compound oxide[J].Journal of Alloys and Compounds,2011,509: 542-545.

    Zhang F P,Lu Q M,Zhang X,et al. First principle investigation of electronic structure of CaMnO3 thermoelectric compound oxide[J].Journal of Alloys and Compounds,2011,509: 542-545.

[17] Zhang F P,Lu Q M,Zhang X,et al. Electronic transport properties of CaMnO3 thermoelectric compound: a theoretical study[J].Journal of Physics and Chemistry Solids,2013,74:1859-1864.

    Zhang F P,Lu Q M,Zhang X,et al. Electronic transport properties of CaMnO3 thermoelectric compound: a theoretical study[J].Journal of Physics and Chemistry Solids,2013,74:1859-1864.

[18] Lhnert R,Stelter M,Tpfer J. Evaluation of soft chemistry methods to synthesize Gd-doped CaMnO3-δwith improved thermoelectric properties[J].Materials Science and Engineering B,2017,223:185-193.

    Lhnert R,Stelter M,Tpfer J. Evaluation of soft chemistry methods to synthesize Gd-doped CaMnO3-δwith improved thermoelectric properties[J].Materials Science and Engineering B,2017,223:185-193.

[19] Zhang F P,Zhang X,Lu Q M,et al. Electronic structure and thermal properties of doped CaMnO3 systems [J].Journal of Alloys and Compounds,2011,509: 4171-4175.

    Zhang F P,Zhang X,Lu Q M,et al. Electronic structure and thermal properties of doped CaMnO3 systems [J].Journal of Alloys and Compounds,2011,509: 4171-4175.

[20] Peng S,Han X,Li L,et al. Electronic and defective engineering of electrospun CaMnO3 nanotubes for enhanced oxygen electrocatalysis in rechargeable zinc-air batteries[J].Advanced energy materials,2018:1800612.

    Peng S,Han X,Li L,et al. Electronic and defective engineering of electrospun CaMnO3 nanotubes for enhanced oxygen electrocatalysis in rechargeable zinc-air batteries[J].Advanced energy materials,2018:1800612.

李欢, 李翠芹, 江祥红, 王雪, 支伟, 杨阳, 卢飞凡, 杨旭. Dy掺杂Ca1-xDyxMnO3(x=0, 0.02, 0.03, 0.05, 0.10)热电材料的Rietveld精修及高温热电性能研究[J]. 人工晶体学报, 2020, 49(2): 312. LI Huan, LI Cuiqin, JIANG Xianghong, WANG Xue, ZHI Wei, YANG Yang, LU Feifan, YANG Xu. Study on Rietveld Refinement and High-temperature Thermoelectric Properties of Dy Doped Ca1-x Dyx MnO3 (x=0, 0.02, 0.03, 0.05, 0.10)Thermoelectric Materials[J]. Journal of Synthetic Crystals, 2020, 49(2): 312.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!