强激光与粒子束, 2017, 29 (8): 082002, 网络出版: 2017-06-30  

强激光加载下高压液氘材料的电导率

Electrical conductivity of liquid deuterium under laser-driven shock loading
作者单位
中国工程物理研究院 上海激光等离子体研究所, 上海 201800
摘要
液氘在高压下有丰富的电学光学性质。利用反射率和相对介电函数关系并从广义极化角度出发初步建立了计算低Z材料电导率的简易模型; 在神光-Ⅱ装置上利用第九路激光冲击加载液氘材料并测量了其在强激光冲击下的高压状态参数和反射率。结合上述理论模型和实验, 研究了高压下液氘的电离度和电导率。结果表明, 液氘在约70 GPa时的电导率约为2.87×105 (Ω·m)-1, 已呈现出较为明显的金属电导特性。显然, 冲击加载下液氘从绝缘分子态开始电离并向金属氘转变发生在更低的压强。
Abstract
Liquid hydrogen and deuterium have abundant electrical and optical properties at high pressure. A simple model to calculate the conductivity of low-Z materials was constructed. Combining the model with experiment, this paper introduces the study of the ionization and conductivity of liquid deuterium at around 70 GPa. The results show that, deuterium at this range of pressure has an ionization about 0.067%, conductivity about 2.87×105(Ω·m)-1, which means the shocked deuterium reaches a conducting state with characteristic of metallic fluid. Apparently, the transition from the insulating molecular state to metallic state of deuterium begins at a lower pressure.
参考文献

[1] Driesner T. The effect of pressure on deuterium-hydrogen fractionation in high-temperature water[J]. Science, 1997, 277(80): 791-793.

[2] Randolph Q, Hood, Giulia G. Insulator to metal transition in fluid deuterium[J]. Journal of Chemical Physics, 2004, 120(12): 5691-5694.

[3] Nellis W J, Weir S T, Mitchell A C. Minimum metallic conductivity of fluid hydrogen at 140 GPa[J]. Physical Review B, 1991, 59(5): 3434-3448.

[4] Nellis W J. Metallic hydrogen at high pressures and temperatures in Jupiter[J]. Chemistry-A European Journal, 1997, 3(12): 1921-1924.

[5] Collins L A, Kress J D, Hanson D E. Reflectivity of warm dense deuterium along the principal Hugoniot[J]. Physical Review B, 2012, 85: 233101.

[6] Hammel B A, Haan S W, Clark D S, et al. High-mode Rayleigh-Taylor growth in NIF ignition capsules[J]. High Energy Density Physics, 2010, 6(2): 171-178.

[7] Celliers P M, Loubeyre P, Eggert J H, et al. Insulator-to-conducting transition in dense fluid helium[J]. Physical Review Letters, 2010, 104: 184503.

[8] Wigner E, Huntington H B. On the possibility of a metallic modification of hydrogen[J]. Journal of Chemical Physics, 1935, 3: 764-770.

[9] Collins G W, Celliers P M, Da Silva L B, et al. Temperature measurements of shock compressed liquid deuterium up to 230 GPa[J]. Physical Review Letters, 2001, 87: 165504.

[10] Knudson M D, Desjarlais M P, Becker A, et al. Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium[J]. Science, 2015, 348(6242): 1455-1460.

[11] Fox M. Optical properties of solids[M]. Oxford: Oxford University Press, 2010: 29-44.

[12] Dressel M, Gruner G. Optical properties of electrons in matter[M]. London: Cambridge University Press, 2003: 18-23.

[13] Eldlio M, Che F, Cada M. IAENG transactions on engineering technologies[M]. Berlin: Springer-Verlag, 2014: 41-49.

[14] Ioffe A, Fregel A R. Non-crystalline, amorphous, and liquid electronic semiconductors[J]. Progress in Semiconductors, 1960, 4(4): 237-291.

[15] Celliers P M, Collins G W, Da Siliva L B, et al. Shock-induced transformation of liquid deuterium into a metallic fluid[J]. Physical Review Letters, 2000, 84(24): 5564-5567.

[16] 舒桦, 傅思祖, 黄秀光, 等. 任意反射面速度反射仪研制中的关键技术[J]. 中国激光, 2010, 37(1): 176-180. (Shu Hua, Fu Sizu, Huang Xiuguang, et al. Key techniques of velocity interferometer for any reflector. Chinese Journal of Lasers, 2010, 37(1): 176-180)

[17] 舒桦, 傅思祖, 黄秀光, 等. 神光-Ⅱ装置上速度干涉仪的研制及应用[J]. 物理学报, 2012, 61: 114102. (Shu Hua, Fu Sizu, Huang Xiuguang, et al. Line-imaging optical recording velocity interferometer at “Shenguang-Ⅱ” laser facility and its applications. Acta Physica Sinica, 2012, 61: 114102)

[18] 傅思祖, 舒桦, 黄秀光, 等. “神光Ⅱ”装置靶面均匀辐照系统的优化设计[J]. 中国激光, 2003, 30(2): 129-133. ( Fu Sizu, Shu Hua, Huang Xiuguang, et al. Optimizing design for uniform irradiation system on target surface of “Shenguang-Ⅱ” facility. Chinese Journal of Lasers, 2003, 30(2): 129-133)

[19] 贺芝宇, 周华珍, 黄秀光, 等. 激光加载下铝材料的冲击温度测量[J]. 强激光与粒子束, 2016, 28: 042002. (He Zhiyu, Zhou Huazhen, Huang Xiuguang, et al. Measurements of aluminum’s shock temperature on SG-Ⅱ high-power laser facility. High Power Laser and Particle Beams, 2016, 28: 042002)

[20] Clark P S. Hydrogen properties for fusion energy[M]. California: University of California Press, 1986: 61-70.

[21] Bass M, Stryland V. Handbook of optics[M]. New York: McGraw-Hill, 1994: 335-362.

[22] Weber M J. Handbook of optical materials[M]. California: The CRC Press, 2003: 100-101.

[23] Hicks D G, Boehly T R, Celliers P M, et al. Shock compression of quartz in the high-pressure fluid regime[J]. Physics of Plasmas, 2005, 12: 082702.

[24] Nellis W J, Mitchell A C, McCandless P C, et al. Electronic energy gap of molecular hydrogen from electrical conductivity measurements at high shock pressures[J]. Physical Review Letters, 1992, 68(19): 2937-2940.

[25] Weir S T, Mitchell A C, Nellis W J, et al. Metallization of fluid molecular hydrogen at 140 GPa (1.4 Mbar)[J]. Physical Review Letters, 1996, 76(11): 1860-1863.

[26] Ross M. Linear-mixing model for shock-compressed liquid deuterium[J]. Physical Review B, 1998, 58(2): 669-677.

[27] Loubeyre P, Celliers P M, Hicks D G, et al. Coupling static and dynamic compressions: first measurements in dense hydrogen[J]. High Pressure Research, 2004, 24(1): 25-31.

罗奎, 傅思祖, 黄秀光, 贺芝宇, 贾果, 舒桦, 贺昊, 夏淼. 强激光加载下高压液氘材料的电导率[J]. 强激光与粒子束, 2017, 29(8): 082002. Luo Kui, Fu Sizu, Huang Xiuguang, He Zhiyu, Jia Guo, Shu Hua, He Hao, Xia Miao. Electrical conductivity of liquid deuterium under laser-driven shock loading[J]. High Power Laser and Particle Beams, 2017, 29(8): 082002.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!