中国激光, 2016, 43 (6): 0602005, 网络出版: 2016-06-06   

激光双MIG电弧复合焊耦合机制及熔滴过渡研究

Study on Coupling Mechanism and Metal Transfer in Laser Double-Wire MIG Arc Hybrid Welding
作者单位
1 石家庄铁道大学材料科学与工程学院河北省交通工程材料重点实验室, 河北 石家庄 050043
2 上海交通大学上海市激光制造与材料改性重点实验室, 上海 200240
摘要
激光双MIG(熔化极稀有气体保护)电弧复合焊具有熔深大、熔敷效率高、焊接质量好等特点,然而由于其耦合机理复杂,给应用带来了一定的困难。基于电磁场理论提出了激光与双电弧耦合机制,当激光光致等离子体中间部位的电子受到两个电弧产生的洛伦兹力和电场力相差较大时,等离子体两端的电子分布会不均匀,这使得一端电弧发生弯曲,沿焊丝轴向的促进力减小,熔滴过渡困难。当激光光致等离子体中间部位的电子受到两个电弧产生的洛伦兹力和电场力大致平衡时,电子能够比较均匀地分布在等离子体的两端,吸引稳定电弧,利于熔滴过渡。采用高速摄影系统和电信号采集系统研究激光双MIG电弧复合焊接过程,结果表明:当工艺参数不合适时,电弧发生弯曲,导致不稳定的大颗粒过渡和短路过渡;当工艺参数合适时,两个电弧根部被固定在激光光致等离子体的下部,形成稳定的射流过渡。
Abstract
Laser double-wire MIG arc hybrid welding has the characteristics of large weld penetration, high metal deposition rate and good welding quality, however, the underlying interaction is so complicated that it brings some difficulties in the practical applications. A coupling mechanism between two arcs and laser-induced plasma is proposed based on the electromagnetic field theory. When the difference between the Lorentz force and electric field force generated by the two arcs acting on the electrons in the middle part of the laser-induced plasma is significant, the electron distributions at two ends of plasma are not uniform, which causes one arc bend, the driving force to be reduced along the wire axis, and the droplet transfer become more difficult. When the two force are balanced, the electron distributions at two ends are relatively uniform, and the plasma can attract and stabilize the two arcs, which results in a smooth droplet transfer. Laser double-wire MIG arc hybrid welding process is experimentally studied by using the high speed photography system and signal acquisition system, and the results show that when the welding process parameters are not suitable, the arc severely deviates from the wire axis so that unstable globular transfer and short circuiting transfer occur. In contrast, when the welding process parameters are suitable, the roots of the two arcs are fixed to the bottom of laser-induced plasma and a smooth and directional spray metal transfer with low spatter loss is achieved.
参考文献

[1] Moore P L, Howse D S, Wallach E R. Microstructures and properties of laser/arc hybrid welds and autogenous laser welds in pipeline steels[J]. Science and Technology of Welding and Joining, 2004, 9(4): 314-322.

[2] Atabaki M M, Ma J, Yang G, et al.. Hybrid laser/arc welding of advanced high strength steel in different butt joint configurations[J]. Materials and Design, 2014, 64: 573-587.

[3] Webster S, Kristensen J K, Petring D. Joining of thick section steels using hybrid laser welding[J]. Ironmaking and Steelmaking, 2008, 35(7): 496-504.

[4] 刘婷, 闫飞, 柳桑, 等. GH909的窄间隙激光熔化极气体保护焊复合焊接工艺研究[J]. 中国激光, 2015, 42(9): 0903008.

    Liu Ting, Yan Fei, Liu Sang, et al.. Study of narrow gap laser-metal inert gas hybrid welding GH909 alloy[J]. Chinese J Lasers, 2015, 42(9): 0903008.

[5] Bagger C, Olsen F O. Review of laser hybrid welding[J]. Journal of Laser Applications, 2005, 17(1): 2-14.

[6] Zou J L, Wu S K, Xiao R S, et al.. Effects of a paraxial TIG arc on high-power fiber laser welding[J]. Materials and Design, 2015, 86: 321-327.

[7] 陈根余, 夏海龙, 周聪, 等. 高功率光纤激光焊接底部驼峰的机理研究[J]. 中国激光, 2015, 42(2): 0203004.

    Chen Genyu, Xia Hailong, Zhou Cong, et al.. Study on the mechanism of root humping of laser welding with high power fiber laser[J]. Chinese J Lasers, 2015, 42(2): 0203004.

[8] 赵琳, 塚本进, 荒金吾郎, 等. 激光电弧复合焊焊缝合金元素分布的研究[J]. 中国激光, 2015, 42(4): 0406006.

    Zhao Lin, Tsukamoto Susumu, Arakane Goro, et al.. Distribution of wire feeding elements in laser-arc hybrid welds[J]. Chinese J Lasers, 2015, 42(4): 0406006.

[9] 焦娇, 杨立军, 刘桐, 等. YAG激光焊接等离子体电信号检测与焊接模式分析[J]. 中国激光, 2014, 41(9): 0903005.

    Jiao Jiao, Yang Lijun, Liu Tong, et al.. Electrical detection of the plasma and analysis of welding modes in YAG laser welding[J]. Chinese J Lasers, 2014, 41(9): 0903005.

[10] Li G, Zhang C, Gao M, et al.. Role of arc mode in laser-metal active gas arc hybrid welding of mild steel[J]. Materials and Design, 2014, 61: 239-250.

[11] Chen Y B, Lei Z L, Li L Q, et al.. Experimental study on welding characteristics of CO2 laser TIG hybrid welding process[J]. Science and Technology of Welding and Joining, 2006, 11(4): 403-411.

[12] 曾晓雁, 高明, 严军. 保护气体对激光电弧复合焊接的影响[J]. 中国激光, 2011, 38(6): 0601005.

    Zeng Xiaoyan, Gao Ming,Yan Jun. Effects of shielding gas in laser-arc hybrid welding[J]. Chinese J Lasers, 2011, 38(6): 0601005.

[13] Hu B, Den Ouden G. Laser induced stabilisation of the welding arc[J]. Science and Technology of Welding and Joining, 2005, 10(1): 76-81.

[14] Liu L M, Chen M H. Interactions between laser and arc plasma during laser-arc hybrid welding of magnesium alloy[J]. Optics and Lasers in Engineering, 2011, 49(9-10): 1224-1231.

[15] Dilthey U, Keller H. Prospects in laser GMA hybrid welding of steel[C]// Proceedings of 1st International WLT-Conference on Lasers in Manufacturing, Munich, 2001: 453-465.

[16] Wieschemann A, Kelle H, Dilthey D. Hybrid-welding and the HyDRA MAG+LASER processes in shipbuilding[J]. Welding International, 2003, 17(10): 761-766.

[17] Gu X Y, Li H, Yang L J, et al.. Coupling mechanism of laser and arcs of laser-twin-arc hybrid welding and its effect on welding process[J]. Optics & Laser Technology, 2013, 48: 246-253.

[18] Ueyama T, Ohnawa T, Tanaka M, et al.. Occurrence of arc interaction in tandem pulsed gas metal arc welding[J]. Science and Technology of Welding and Joining, 2007, 12(6): 523-529.

[19] 胡连海. 10Ni3CrMoV钢厚板激光焊接稳定性与接头组织及性能研究[D]. 上海: 上海交通大学, 2011: 28-32.

    Hu Lianhai. A Study on laser welding stability, joint microstructures and properties of 10Ni3CrMoV thick steel[D]. Shanghai: Shanghai Jiao Tong University, 2011: 28-32.

[20] Zhang X D, Chen W Z, Jiang P, et al.. Modeling and application of plasma charge current in deep penetration laser welding[J]. Journal of Applied Physics, 2003, 93(11): 8842-8847.

[21] Tse H C, Man H C, Yue T M. Effect of electric and magnetic fields on plasma control during CO2 laser welding[J]. Optics and Lasers in Engineering, 1999, 32(1): 55-63.

[22] Liu S Y, Liu F D, Xu C Y, et al.. Experimental investigation on arc characteristic and droplet transfer in CO2 laser-metal arc gas (MAG) hybrid welding[J]. International Journal of Heat and Mass Transfer, 2013, 62: 604-611.

[23] 雷正龙, 陈彦宾, 李俐群, 等. CO2激光MIG复合焊接射滴过渡的熔滴特性[J]. 应用激光, 2004, 24(6): 361-364.

    Lei Zhenglong, Chen Yanbin, Li Liqun, et al.. Characteristics of droplet transfer in CO2 laser-MIG hybrid welding with projected mode[J]. Applied Laser, 2004, 24(6): 361-64.

胡连海, 黄坚, 吴毅雄, 许昌玲. 激光双MIG电弧复合焊耦合机制及熔滴过渡研究[J]. 中国激光, 2016, 43(6): 0602005. Hu Lianhai, Huang Jian, Wu Yixiong, Xu Changling. Study on Coupling Mechanism and Metal Transfer in Laser Double-Wire MIG Arc Hybrid Welding[J]. Chinese Journal of Lasers, 2016, 43(6): 0602005.

本文已被 9 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!