红外与激光工程, 2018, 47 (11): 1117002, 网络出版: 2019-01-10   

基于LabVIEW的空芯光子晶体光纤CO2气体检测系统

Detection system of CO2 using hollow-core crystal fiber based on LabVIEW
作者单位
西安邮电大学 电子工程学院, 陕西 西安 710061
摘要
为了实现全光纤型高灵敏度气体在线检测系统, 以空芯光子晶体光纤为传感气室, 利用CO2气体分子在1 572.48 nm附近吸收谱以及虚拟仪器LabVIEW平台搭建了双光路差分CO2气体近红外检测实验系统。实验中所用空芯光子晶体光纤长度为1.8 m, 通过对其两端同时充气, 提高了系统响应速度, 0.1 MPa下充气过程仅需100 s左右。以标准浓度CO2气体对该系统进行了标定, 并对浓度2%、5%、10%和100%的CO2气体进行了测量, 结果表明100 min内浓度检测相对误差不超过2%, 标准差最大3.32%。气体吸收光程为1.8 m, 系统检测灵敏度达到5.981 8×10-5 μW/ppm。
Abstract
For the purpose of realizing the all-fiber gas detection system with high sensor sensitivity, using the Hollow Core-Photonic Crystal Fiber (HC-PCF) as gas cell, a dual-optical path differential near-infrared carbon dioxide detection experimental system based on virtual instruments LabVIEW and the absorption spectroscopy around wavelength 1 572.48 nm of carbon dioxide molecule was developed. The system response time was about 100 s by inflating the HC-PCF of 1.8 m long from two ends under the pressure of 0.1 MPa. The detection system was calibrated with carbon dioxide of standard concentration. Carbon dioxide with known concentration of 2%, 5%, 10% and 100% were tested respectively and the experimental results showed that the detection errors relative to standard concentration were no more than 2% and the maximum standard deviation of measured concentration were 3.32% in 100 minutes. In addition, the optical path of gas absorption reaches 1.8 m and the system detection sensitivity of 5.981 8×10-5 μW/ppm was achieved.
参考文献

[1] Du Juan, Sun Yanguang, Chen Dijun, et al. Frequency-stabilized laser system at 1 572 nm for space-borne CO2 detection LIDAR[J]. Chinese Optics Letters, 2017, 15(3): 88-92.

[2] Wang J, Zheng L, Niu X, et al. Mid-infrared absorption-spectroscopy-based carbon dioxide sensor network in greenhouse agriculture: development and deployment[J]. Applied Optics, 2016, 55(25): 7029-7036.

[3] Spachos P, Hatzinakos D. Real-time indoor carbon dioxide monitoring through cognitive wireless sensor networks[J]. IEEE Sensors Journal, 2015, 16(2): 506-514.

[4] Tang D L, He S, Dai B, et al. Detection H2S mixed with natural gas using hollow-core photonic bandgap fiber[J]. Optik, 2014, 125(11): 2547-2549.

[5] 郑玲娇, 牛新涛, 王嘉宁, 等. 中红外二氧化碳传感器的研制及在农业中的应用[J]. 光子学报, 2017, 46(8): 150-157.

    Zheng Lingjiao, Niu Xintao, Wang Jianing, et al. Development and agricultural application of a mid-infrared carbon dioxide sensor system[J]. Acta Photonica Sinica, 2017, 46(8): 150-157. (in Chinese)

[6] Robert C. Simple, stable and compact multiple-reflection optical cell for very long optical paths [J]. Applied Optics, 2007, 46(22): 5408-5418.

[7] Anderson B L, Yu S. Robert cell-based optical delay elements for white cell true-time delay, devices[J]. Journal of Lightwave Technology, 2013, 31(7): 1006-1014.

[8] Nwaboh J A, Hald J, Lyngs J K, et al. Measurements of CO2 in a multipass cell and in a hollow-core photonic bandgap fiber at 2 μm[J]. Applied Physics B, 2013, 110(2): 187-194.

[9] Numata K, Chen J R, Wu S T, et al. Frequency stabilization of distributed-feedback laser diodes at 1 572 nm for lidar measurements of atmospheric carbon dioxide[J]. Applied Optics, 2011, 50(7): 1047-1056.

[10] 邵君宜, 林兆祥, 刘林美, 等. 1.572 μm附近CO2吸收光谱的测量[J]. 物理学报, 2017, 66(10): 130-137.

    Shao Junyi, Lin Zhaoxiang, Liu Linmei, et al. Measurement of CO2 absorption spectrum around 1.572 μm[J]. Acta Phys Sin, 2017, 66(10): 130-137. (in Chinese)

[11] 李利锋, 杨青, 朱林泉. 基于红外差分吸收法的瓦斯浓度检测研究[J]. 机械工程与自动化, 2010(2): 203-205.

    Li Lifeng, Yang Qing, Zhu Linquan. Detection of gas concentration based on infrared differential absorption[J].Mechanical Engineering and Automation, 2010(2): 203-205. (in Chinese)

[12] 徐康, 吕淑媛, 杨祎. 光子晶体光纤CO2气体传感器的研究[J]. 激光技术, 2017, 41(5): 693-696.

    Xu Kang, Lv Shuyuan, Yang Yi. Research of CO2 gas sensors based on photonic crystal fiber[J]. Laser Technology, 2017, 41(5): 693-696. (in Chinese)

[13] Henningsen J, Hald J. Dynamics of gas flow in hollow core photonic bandgap fibers [J]. Applied Optics, 2008, 47(15): 2790-2797.

吕淑媛, 杜绍勇. 基于LabVIEW的空芯光子晶体光纤CO2气体检测系统[J]. 红外与激光工程, 2018, 47(11): 1117002. Lv Shuyuan, Du Shaoyong. Detection system of CO2 using hollow-core crystal fiber based on LabVIEW[J]. Infrared and Laser Engineering, 2018, 47(11): 1117002.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!