激光与光电子学进展, 2014, 51 (2): 021403, 网络出版: 2014-01-21   

不锈钢-碳钢层合板激光熔覆制备方法试验研究

Experimental Study on the Stainless-Carbon Steel Laminated Plates Prepared by Laser Cladding
作者单位
大连理工大学机械工程学院, 辽宁 大连 116024
摘要
针对不锈钢-碳钢层合板制备方法中结合面存在的缺陷问题,采用激光熔覆法制备金属层合板。调整激光功率和扫描速度两个主要工艺参数,研究其对层合板金相组织的影响。通过不锈钢-碳钢层合板金相组织分析以及拉伸试验研究,优化层合板激光熔覆工艺参数。结果表明:随着激光能量密度的增大,不锈钢-碳钢层合板界面波高依次呈0.01~0.03 mm、0.08~0.10 mm和0.11~0.14 mm三种形态,且熔覆层厚度逐渐增加。随着界面波高的增大,屈服强度逐渐增大,当不锈钢-碳钢层合板界面金相组织形态呈波高为0.11~0.14 mm时,屈服强度为410 MPa。激光熔覆制备方法获得了不锈钢-碳钢冶金结合及组织性能均良好的层合板,屈服强度和延伸率均达到了不锈钢层合板的标准要求,表明此工艺方法是可行的,为激光熔覆制备层合板的广泛应用提供了理论和试验依据。
Abstract
Due to quality defects on the surface of stainless and carbon steel laminated plates prepared conventionally, laser cladding is introduced for preparing metal laminated plates. By adjusting two main process parameters of the laser power and scanning speed, their influences on the metallographic structure of laminated platesby laser cladding are investigated. Then the parameters are optimized according to metallographic structure analysis and tensile test of stainless-carbon steel laminated plates. The results show that: with the decrease of the energy density of the laser, stainless steel laminated plates interface is arranged in three microstructure morphology, which have wave heights of 0.01~0.03 mm, 0.08~0.10 mm and 0.11~0.14 mm, and the layer thickness increases gradually. Meanwhile, the yield strength increases as the interface wave height increases. When the wave height of the interface of stainless steel laminated plates is 0.11~0.14 mm, thehigh yield strength of 410 MPa is obtained. Stainless-carbon steel laminated plates prepared by laser cladding have strong metallurgy bonding quality and good microstructure properties. The tensile strength and elongation indicators have met the requirements of the standard of stainless-carbon steel laminated plates. This method is feasible, and provides theoretical and experimental basis for the wide application of laser cladding preparation of laminated plates.
参考文献

[1] 丁海民, 范孝良, 王进峰, 等. 热轧复合不锈钢-碳钢复合板界面特征[J]. 材料热处理学报, 2010, 32(11): 18-22.

    Ding Haimin, Fan Xiaoliang, Wang Jinfeng, et al.. Interface characterizationof hot-rolled stainless steel/carbon steel clad [J]. Transactions of Materials and Heat Treatment, 2010, 32(11): 18-22.

[2] 杨冰冰, 王续跃, 徐文骥, 等. 不锈钢-碳钢层合板激光弯曲试验研究[J]. 激光与光电子学进展, 2012, 49(9): 091430.

    Yang Bingbing, Wang Xuyue, Xu Wenji, et al.. Experiments on laser bending of stainless steel-carbon steel laminated sheet [J]. Laser & Optoelectronics Progress, 2012, 49(9): 091430.

[3] 韩丽青, 王自东, 林国标, 等. 爆炸复合TA2/316L板的组织和性能研究[J]. 材料热处理学报, 2008, 29(1): 107-110.

    Han Linqing, Wang Zidong, Lin Guobiao, et al.. Investigation on microstructure and property of TA2/316L composite plate prepared by explosive welding [J]. Transactions of Materials and Heat Treament, 2008, 29(1): 107-110.

[4] Kacar R, Acarer M. Aninvestigation on the explosivecladding of 316L stainless steel P355GH steel [J]. J Mater Process Technol, 2004, 152(1): 91-96.

[5] Manesh H D. Assessment of surface bonding strength in Alclad steel strip using electrical resistivity andpeeling tests [J]. Mater Sci Technol, 2006, 22(6): 634-640.

[6] Rao N V, Sarma D S, Nagarjuna S, et al.. Influence of hotrolling and heattreatment on structure and properties ofHSLA steel explosively clad with austenitic stainless steel [J]. Mater Sci Technol, 2009, 25(11): 1387-1396.

[7] 刘 环, 郑晓冉. 层状金属复合板制备技术[J]. 材料导报, 2012, 26(Z1): 131-135.

    Liu Huan, Zheng Xiaoran. The manufacturing technique of clad metals sheet [J]. Mater Rev, 2012, 26(Z1): 131-135.

[8] Jianli Song, Qilin Deng, Changyuan Chen, et al.. Rebuilding of metal components with laser cladding forming [J]. Appl Surf Sci, 2006, 252(22): 7934-7940.

[9] 方建敏, 张杏耀, 单爱党, 等. 累积叠轧焊不锈钢的组织和性能[J].机械工程材料, 2006, 30(8): 16-18.

    Fang Jianmin, Zhang Xingyao, Shan Aidang, et al.. Microstructure and properties of stainless steels processed by accumulative roll-bonding [J]. Materials for Mechanical Engineering, 2006, 30(8): 16-18.

[10] 赵 峰, 李选明, 王虎年. 爆炸-轧制钛/钢复合板界面结合性能研究[J]. 材料开发与应用, 2010, 25(1): 30-34.

    Zhao Feng, Li Xuanming, Wang Hunian. The bonding property of the explode-rolled Ti/steel clad metal [J]. Development and Application of Materials, 2010, 25(1): 30-34.

[11] 徐 柠, 张群莉, 姚建华. 激光原位反应制备TiC强化涂层的显微结构[J]. 中国激光, 2010, 37(10): 2653-2657.

    Xu Ning, Zhang Qunli, Yao Jianhua. Microstructure of in-site synthesis TiC hardened coating by laser irradiation [J]. Chinese J Lasers, 2010, 37(10): 2653-2657.

[12] 李养良, 金海霞, 白小波, 等. 激光熔覆技术的研究现状与发展趋势[J]. 热处理技术与装备, 2009, 30(4): 1-5.

    Li Yangliang, Jin Haixia, Bai Xiaobo, et al.. Research progress and development trend of laser cladding technology [J]. Heat Treatment Technology and Equipment, 2009, 30(4): 1-5.

[13] 张光钧, 吴培桂, 许佳宁, 等. 激光熔覆的应用基础研究进展[J]. 金属热处理, 2011, 36(1): 5-13.

    Zhang Guangjun, Wu Peigui, Xu Jianing, et al.. Development of basic research for application of laser cladding technology [J]. Heat Treatment of Metals, 2011, 36(1): 5-13.

[14] 袁庆龙, 冯旭东, 曹晶晶, 等. 激光熔覆镍基合金涂层微观组织研究[J]. 中国激光, 2010, 37(8): 2116-2120.

    Yuan Qinglong, Feng Xudong, Cao Jingjing, et al.. Research on microstructure of Ni-based alloy coating by laser cladding [J]. Chinese J Lasers, 2010, 37(8): 2116-2120.

[15] 徐 卫, 朱 明, 郭胜利, 等. 钛-铝复合板界面组织及其对加工性能的影响[J]. 稀有金属, 2011, 35(3): 342-348.

    Xu Wei, Zhu Ming, Guo Shengli, et al.. Interfaces of titanium-aluminum clad sheet and affecting to processing performance [J]. Chinese J Rare Metals, 2011, 35(3): 342-348.

[16] 张越举, 杨旭升, 李晓杰, 等.钛/钢复合板爆炸焊接试验[J].爆炸与冲击, 2012, 32(1): 103-107.

    Zhang Yueju, Yang Xusheng, Li Xiaojie, et al.. An experimental research on explosive welding of titanium/steel clad plate [J]. Explosion and Shock Waves, 2012, 32(1): 103-107.

[17] 王立新, 李国平. 爆破不锈钢复合板界面组织和性能分析及应用[J].钢铁, 2005, 40(11): 71-74.

    Wang Lixin, Li Guoping. Interface structure, performance analysis and application of exploded stainless and carbon steel clad plates [J]. Iron and Steel, 2005, 40(11): 71-74.

[18] 魏学勤, 郑启光, 辜建辉, 等. 激光熔覆过程中的温度分布和涨落对熔覆工艺的影响[J].中国机械工程, 2001, 12(2): 150-153.

    Wei Xueqin, Zheng Qiguang, Gu Jianhui, et al.. Influences ofinhomogeneous distribution and ripple of temperature ontechnique of laser cladding [J]. China Mechanical Engineering, 2001, 12(2): 150-153.

[19] 董成文, 李艳芳, 任学平. TA1/Q235钢复合板累积叠轧焊界面特性[J]. 北京科技大学学报, 2008, 30(3): 249-253.

    Dong Chengwen, Li Yanfang, Ren Xueping. Joint interface characteristics of TA1/Q235 clad plates manufactured by accumulative roll-bonding [J]. J University of Science and Technology Beijing, 2008, 30(3): 249-253.

[20] 毕宗岳, 张 峰, 金时麟, 等. 2205/Q235大面积双相不锈钢复合板性能分析[J]. 焊管, 2010, 33(3): 25-28.

    Bi Zongyue, Zhang Feng, Jin Shilin, et al.. Performance analysis of large area 2205/Q235 duplex stainless steel composite plate [J]. Welded Pipe and Tube, 2010, 33(3): 25-28.

[21] 张怀仁. 提高酒钢Q345B板材屈服强度研究[D]. 西安: 西安建筑科技大学, 2003. 32-46.

    Zhang Huairen. Study on Increasing Yield Strength of Q345B Plate in JISCO[D]. Xi′an: Xi′an University of Architecture and Technology, 2003. 32-46.

高美娜, 王续跃, 徐文骥, 郭东明. 不锈钢-碳钢层合板激光熔覆制备方法试验研究[J]. 激光与光电子学进展, 2014, 51(2): 021403. Gao Meina, Wang Xuyue, Xu Wenji, Guo Dongming. Experimental Study on the Stainless-Carbon Steel Laminated Plates Prepared by Laser Cladding[J]. Laser & Optoelectronics Progress, 2014, 51(2): 021403.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!