光通信技术, 2020, 44 (2): 42, 网络出版: 2020-04-05   

半导体锗芯光纤拉丝过程中的芯-包层流速差异研究

Study of the flow velocity difference of core and cladding during the drawing process of semiconductor Ge-core fiber
作者单位
上海大学 特种光纤与光接入网重点实验室, 上海 200444
摘要
半导体芯光纤因其特殊的光电特性而受到广泛关注。由于纤芯和包层材料之间的性质差异, 制备高质量的半导体芯光纤比传统掺杂石英玻璃光纤更为困难。以锗芯光纤为研究对象, 通过有限元法, 模拟仿真了激光拉制锗芯光纤的动态过程, 研究了拉制过程中芯层锗和包层石英玻璃材料的流速差异, 以及不同拉丝速度对其流速差异的影响。仿真结果表明: 在预制棒颈缩区, 芯层锗和包层石英玻璃材料的流速差异最大, 且不同拉丝速度对预制棒芯层锗和包层石英玻璃材料的流速影响不同。
Abstract
Semiconductor core fiber has attracted more and more attention due to its special photoelectric characteristics. The drawing of the semiconductor core fiber is more complicated than the conventional silica fiber due to the difference in properties between the core and the cladding material. In this paper, the Ge-core fiber is taken as the research object, and the dynamic drawing process of the Ge-core fiber is simulated by the finite element method. The difference in flow rate between the core of germanium and the cladding of silica, and the effect of different fiber drawing speeds on this flow rate difference are studied. The simulation result shows that significant difference of the core and cladding flow rate is at the position of the neck-down region of the preform, and the different drawing speed has different effects on the flow rates of the Ge-core and the silica-cladding of the preform.
参考文献

[1] SOREF R. Mid-infrared photonics in silicon and germanium[J]. Nature Photonics, 2010, 4(8): 495-497.

[2] WON D J, RAMIREZ M O, KANG H, et al. All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers[J]. Applied Physics Letters, 2007, 91(16): 161112-1-161112-3.

[3] SAZIO P J A, AMEZCUA-CORREA A, FINLAYSON C E, et al. Microstructured optical fibers as high-pressure microfluidic reactors[J]. Science, 2006, 311(5767): 1583-1586.

[4] BALLATO J, HAWKINS T, FOY P, et al. Silicon optical fiber[J]. Optics express, 2008, 16(23): 18675-18683.

[5] JI X, PAGE R L, CHAUDHURI S, et al. Single-Crystal Germanium Core Optoelectronic Fibers[J]. Advanced Optical Materials, 2017, 5(1): 1600592-1-1600592-6.

[6] JI X, LEI S, YU S Y, et al. Single-crystal silicon optical fiber by direct laser crystallization[J]. ACS Photonics, 2016, 4(1): 85-92.

[7] 彭康亮. 半导体纤芯/玻璃包层复合光纤的制备与研究[D]. 广州: 华南理工大学, 2014.

[8] ZHANG S, ZHAO Z, CHEN N, et al. Temperature characteristics of silicon core optical fiber Fabry–Perot interferometer[J]. Optics letters, 2015, 40(7): 1362-1365.

[9] WANG D, CHEN N, CHEN Z, et al. Composition and strain analysis of Si1-xGex core fiber with Raman spectroscopy[J]. AIP Advances, 2018, 8(6): 065006-1-065006-6.

[10] WEI Z, LEE K M, TCHIKANDA S W, et al. Free surface flow in high speed fiber drawing with large-diameter glass preforms[J]. Journal of heat transfer, 2004, 126(5): 713-722.

[11] HE T, ZHAO Z, CHENG X, et al. Temperature distribution of preform in drawing silicon core optical fiber with CO2 laser heating[J]. High Power Laser & Particle Beams, 2016, 28(9): 091003-1-091003-6.

[12] ZHANG W, CHEN N, CHEN Z, et al. The dynamic process of laser drawing germanium core optical fiber[C]//In Journal of Physics Conference Series, March 16-18, 2017, Nanjing, China. Nanjing: IOP Publishing, 2017.

薛辉, 陈娜, 陈振宜, 刘书朋, 商娅娜. 半导体锗芯光纤拉丝过程中的芯-包层流速差异研究[J]. 光通信技术, 2020, 44(2): 42. XUE Hui, CHEN Na, CHEN Zhenyi, LIU Shupeng, SHANG Ya'na. Study of the flow velocity difference of core and cladding during the drawing process of semiconductor Ge-core fiber[J]. Optical Communication Technology, 2020, 44(2): 42.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!