光学 精密工程, 2019, 27 (3): 552, 网络出版: 2019-05-30   

大面积发散太阳模拟器的均匀照明

Uniform illumination method for large-area divergent solar simulators
张燃 1,2张国玉 1,3,4张健 1,3,4徐达 1,3,4孙高飞 1,3,4刘石 1,3,4苏拾 1,3,4杨松洲 1,3,4
作者单位
1 长春理工大学, 吉林 长春 130022
2 长春工程技术学院, 吉林 长春 130022
3 光电测控与光信息传输技术教育部重点实验室, 吉林 长春 130022
4 吉林省光电测控仪器工程技术研究中心, 吉林 长春 130022
摘要
为实现太阳模拟器的大辐照面积均匀照明, 研究了大面积发散太阳模拟器光学系统的设计与仿真。分析了复眼透镜阵列组与发散投影系统的工作原理及旁瓣效应的产生机理; 基于嵌套建模思想, 结合多项式拟合方法, 得出了氙灯轴上的强度分布曲线, 并根据氙灯发光能量对称的性质, 实现了氙灯空间光强分布的模拟; 结合提出的光学系统设计边界条件与参数, 设计了光束整形系统、复眼透镜阵列组和发散投影系统。实验结果表明: 大面积发散太阳模拟器的工作距离为20 000 mm, 辐照面直径为1 500 mm, 辐照均匀度为92.8%, 满足均匀照明的使用需求。
Abstract
An optical system simulation and design methods for large-area divergent solar simulators were studied to achieve uniform illumination of a large irradiation area of solar simulators. First, the working principles of fly-eye lens array groups and examine divergent projection systems as well as the production mechanism of the sidelobe effect was analyzed. Subsequently, using nesting modeling combined with the polynomial fitting method, the intensity distribution curve of the xenon lamp axis was obtained. Then a luminous intensity distribution simulation of the xenon lamp was conduct based on the luminous energy symmetry of the xenon lamp. Considering the boundary conditions and parameters for the optical system designly, a beam-shaping system, a fly-eye lens array group, and a divergent projection system were designed. The experimental results show that when the working distance is 20 000 mm and the irradiation surface diameter is 1 500 mm, the irradiation uniformity is 92.8%, which meets the uniform illumination requirement for large-area divergent solar simulators.
参考文献

[1] 刘石. 高精度准直式太阳模拟器及其关键技术研究[D].长春: 长春理工大学,2014.

    LIU SH. Study on Key Technique of Collimation Solar Simulator with High-Precision[D]. Changchun: Changchun University of Science and Technology, 2014. (in Chinese)

[2] 白光耀, 王昊, 王志远,等. 面向微小卫星的全视场数字太阳敏感器设计[J]. 传感技术学报, 2016, 29(2): 232-236.

    BAI G Y, WANG H, WANG ZH Y, et al.. Design of digital sun sensor with panoramic field for micro-satellite[J]. Chinese Journal of Sensors and Actuators, 2016, 29(2): 232-236. (in Chinese)

[3] 刘金龙, 郄殿福, 裴一飞,等. 使用太阳模拟器进行热平衡试验的附加外热流影响分析[J]. 航天器环境工程, 2015, 32(2): 182-186.

    LIU J L, XI D F, PEI Y F, et al.. Analysis of additional heat flux by using solar simulator in thermal balance test[J]. Spacecraft Environment Engineering, 2015, 32(2): 182-186. (in Chinese)

[4] 王敏. 环境因素对平板型太阳能集热器热性能的影响研究[D].北京: 清华大学,2016.

    WANG M. Effect of Environmental Factors on Thermal Performance of Flat Plate Solar Collector[D]. Beijing: Tsinghua University, 2016. (in Chinese)

[5] 叶金晶, 周健, 卞洁玉,等. 晶硅太阳电池原位光老化及热致输运机理[J]. 光子学报, 2016, 45(9): 105-110.

    YE J J, ZHOU J, BIAN J Y, et al.. Light soaking in situ and thermally induced transport mechanism of crystalline silicon solar cell[J]. Acta Photonica Sinica, 2016, 45(9): 105-110. (in Chinese)

[6] 严广寒, 刘德富, 张佳磊,等. 不同光照条件对浮游植物生物量与多样性的影响[J]. 水生态学杂志, 2018, 39(1): 37-43.

    YAN G H, LIU D F, ZHANF J L, et al.. Effects of illumination intensity on phytoplankton community biomass and diversity[J]. Journal of Hydroecology, 2018, 39(1): 37-43. (in Chinese)

[7] EDDY R. Design and construction of the JPL SS15B solar simulator[C]. Third Space Simulation Conference, 1968: 22-35.

[8] POWELL I. New concept for a system suitable for solar simulation.[J]. Appl. Opt., 1980, 19(2): 329-334.

[9] 黄本诚. KM4大型空间环境摸拟设备[J]. 真空科学与技术学报, 1988(6): 33-39.

    HUANG B CH. The large space simulation environmental facility-KM4[J]. Chinese Journal of Vacuum Science and Technology, 1988(6): 33-39. (in Chinese)

[10] 庞贺伟, 黄本诚, 臧友竹,等. KM6太阳模拟器设计概述[J]. 航天器环境工程, 2006, 23(3): 125-133.

    PANG H W, HUANG B CH, ZANG Y ZH, et al.. Design of KM6 solar simulator[J]. Spacecraft Environment Engineering, 2006, 23(3): 125-133. (in Chinese)

[11] 付明. 大型发散式太阳模拟器光学系统设计[D]. 长春: 长春理工大学, 2014.

    FU M. The Design of Large Solar Simulator Divergent Optical System[D]. Changchun: Changchun University of Science and Technology, 2014. (in Chinese)

[12] ULMER S, REINALTER W, HELLER P, et al.. Beam characterization and improvement with a flux mapping system for dish concentrators[J]. Journal of Solar Energy Engineering, 2002(2002): 182-188.

[13] 向艳红, 张容, 黄本诚. KFTA太阳模拟器辐照均匀性仿真[J]. 航天器环境工程, 2006, 23(5): 288-292.

    XIANG Y H, ZHANG R, HUANG B CH. Irradiation uniformity simulation of KFTA solar simulator[J]. Spacecraft Environment Engineering, 2006, 23(5): 288-292. (in Chinese)

[14] 宋培宇. 高准直高辐照度太阳模拟器的设计与仿真分析[D].哈尔滨: 哈尔滨工业大学,2017.

    SONG P Y. Design and Simulation Analysis of Solar Simulator with High Collimation and High Irradiance[D]. Harbin: Harbin Institute of Technology, 2017. (in Chinese)

[15] 杨颐鸥. 用于太阳模拟器的大功率长弧氙灯内触发新技术研究[D]. 上海: 上海交通大学, 2014.

    YANG Y O. Study on New Internal Trigger Technology of the Long Arc Xenon Lamp for High-Power Solar Simulator[D]. Shanghai: Shanghai Jiao Tong University, 2014. (in Chinese)

[16] 朱新新, 王辉, 刘洪波,等. 弧光灯热流标定系统光源的仿真设计[J]. 光学学报, 2016(4): 246-252.

    ZHU X X, WANG H, LIU H B, et al.. Simulation design of the arc lamp system for heat flux sensor calibration[J]. Acta Optica Sinica, 2016(4): 246-252. (in Chinese)

[17] 仲跻功. 提高光学复眼透镜阵列组均匀化效果的有关问题[J]. 光学 精密工程, 1983(5): 28-32.

    ZHONG J G. Problems related to improving the uniformity of optical integrator[J]. Opt. Precision Eng., 1983(5): 28-32. (in Chinese)

[18] 吕涛, 付东辉, 陈小云,等. 光学复眼透镜阵列组的元素透镜数量和形状对太阳模拟器均匀性的影响[J]. 光电子·激光, 2014(10): 1849-1853.

    L T, FU D H, CHEN X Y, et al.. Effect of optical intergrator element lenses′ number and shape on the lighting uniformity of solar simulator[J]. Journal of Optoelectronics·Laser, 2014(10): 1849-1853. (in Chinese)

[19] 杜温钖, 李福田, 周秀良. 均匀照明和照度分布计算[J]. 光学 精密工程, 1978(4): 1-6.

    DU W Y, LI F T, ZHOU X L. The calculation of uniform illumination and illumination distribution[J]. Opt. Precision Eng., 1978(4): 1-6. (in Chinese)

张燃, 张国玉, 张健, 徐达, 孙高飞, 刘石, 苏拾, 杨松洲. 大面积发散太阳模拟器的均匀照明[J]. 光学 精密工程, 2019, 27(3): 552. ZHANG Ran, ZHANG Guo-yu, ZHANG Jian, XU Da, SUN Gao-fei, LIU Shi, SU Shi, YANG Song-zhou. Uniform illumination method for large-area divergent solar simulators[J]. Optics and Precision Engineering, 2019, 27(3): 552.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!