激光与光电子学进展, 2020, 57 (11): 111402, 网络出版: 2020-06-02   

飞秒激光微纳加工光纤功能器件研究进展 下载: 2449次特邀综述

Research Progress on Optical Fiber Functional Devices Fabricated by Femtosecond Laser Micro-Nano Processing
作者单位
1 哈尔滨工业大学物理学院, 黑龙江 哈尔滨 150001
2 哈尔滨工业大学(威海)理学院, 山东 威海 264209
引用该论文

李金健, 刘一, 曲士良. 飞秒激光微纳加工光纤功能器件研究进展[J]. 激光与光电子学进展, 2020, 57(11): 111402.

Jinjian Li, Yi Liu, Shiliang Qu. Research Progress on Optical Fiber Functional Devices Fabricated by Femtosecond Laser Micro-Nano Processing[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111402.

参考文献

[1] Kawata S, Sun H B, Tanaka T, et al. Finer features for functional microdevices[J]. Nature, 2001, 412(6848): 697-698.

[2] Serbin J, Egbert A, Ostendorf A, et al. Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics[J]. Optics Letters, 2003, 28(5): 301-303.

[3] Tanaka T, Sun H B, Kawata S. Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system[J]. Applied Physics Letters, 2002, 80(2): 312-314.

[4] Teng Y, Zhou J J, Lin G, et al. Recent research progress on femtosecond laser induced microstructures in glasses[J]. International Journal of Optomechatronics, 2012, 6(2): 179-187.

[5] Li Q K, Yu Y H, Wang L, et al. Sapphire-based Fresnel zone plate fabricated by femtosecond laser direct writing and wet etching[J]. IEEE Photonics Technology Letters, 2016, 28(12): 1290-1293.

[6] Guo Q, Yu Y S, Zheng Z M, et al. Femtosecond laser inscribed sapphire fiber Bragg grating for high temperature and strain sensing[J]. IEEE Transactions on Nanotechnology, 2019, 18: 208-211.

[7] Deubel M, von Freymann G, Wegener M, et al. Direct laser writing of three-dimensional photonic-crystal templates for telecommunications[J]. Nature Materials, 2004, 3(7): 444-447.

[8] Li Y, Qu S L. Fabrication of spiral-shaped microfluidic channels in glass by femtosecond laser[J]. Materials Letters, 2010, 64(13): 1427-1429.

[9] Luo F F, Lin G, Sun H Y, et al. Generation of bubbles in glass by a femtosecond laser[J]. Optics Communications, 2011, 284(19): 4592-4595.

[10] Cheng Y, Sugioka K, Midorikawa K, et al. Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser[J]. Optics Letters, 2003, 28(1): 55-57.

[11] Kamlage G, Chichkov B N, Ostendorf A, et al. Deep drilling of metals by femtosecond laser pulses[J]. Proceedings of SPIE, 2002, 4760: 394-397.

[12] Rao Y J, Deng M, Duan D W, et al. Micro Fabry-Perot interferometers in silica fibers machined by femtosecond laser[J]. Optics Express, 2007, 15(21): 14123-14128.

[13] Nakaya T, Qiu J R, Zhou C H, et al. Fabrication of Dammann gratings inside glasses by a femtosecond laser[J]. Chinese Physics Letters, 2004, 21(6): 1061-1063.

[14] Quante K, Ludwig K, Kern M. Marginal and internal fit of metal-ceramic crowns fabricated with a new laser melting technology[J]. Dental Materials, 2008, 24(10): 1311-1315.

[15] Torchia G, Rodenas A, Benayas A, et al. Highly efficient laser action in femtosecond-written Nd∶yttrium aluminum garnet ceramic waveguides[J]. Applied Physics Letters, 2008, 92(11): 111103.

[16] Ran Z L, Liu S, Liu Q, et al. Laser-machined microcavities for simultaneous measurement of high-temperature and high-pressure[J]. Sensors, 2014, 14(8): 14330-14338.

[17] Wang P F, Zhao H Y, Brambilla G, et al. Long period grating inscribed in multimode fibre interferometer and its application in refractive index sensing[J]. Proceedings of SPIE, 2015, 9634: 96346A.

[18] Liu Z, Liu Y X, Tang Y, et al. Fabrication and application of a non-contact double-tapered optical fiber tweezers[J]. Optics Express, 2017, 25(19): 22480-22489.

[19] Subramanian K, Gabay I, Ferhanoglu O, et al. Kagome fiber based ultrafast laser microsurgery probe delivering micro-Joule pulse energies[J]. Biomedical Optics Express, 2016, 7(11): 4639-4653.

[20] Nishimura N, Schaffer C B, Friedman B, et al. Targeted insult to subsurface cortical blood vessels using ultrashort laser pulses: three models of stroke[J]. Nature Methods, 2006, 3(2): 99-108.

[21] Xu H L, Cheng Y, Chin S L, et al. Femtosecond laser ionization and fragmentation of molecules for environmental sensing[J]. Laser & Photonics Reviews, 2015, 9(3): 275-293.

[22] Guan C Y, Tian X Z, Li S Q, et al. Long period fiber grating and high sensitivity refractive index sensor based on hollow eccentric optical fiber[J]. Sensors and Actuators B: Chemical, 2013, 188: 768-771.

[23] Chen Q Q, Fang Z J, Song H, et al. Femtosecond laser induced space-selective precipitation of Cr 3+-doped ZnAl2O4 crystal in glass[J]. Journal of Alloys and Compounds, 2017, 699: 243-246.

[24] Chen Q Q, Song H, Zhang F T, et al. A strategy for fabrication of controllable 3D pattern containing clusters and nanoparticles inside a solid material[J]. Nanoscale, 2017, 9(26): 9083-9088.

[25] Qiu J R. Formation and applications of periodic structures in transparent materials induced by single fs laser beam[J]. MATEC Web of Conferences, 2013, 8: 03008.

[26] Zhang F, Yu Y, Cheng C, et al. Wavelength response and thermal stability of embedded nanograting structure light attenuator fabricated by direct femtosecond laser writing[J]. Applied Physics B, 2014, 117(1): 53-58.

[27] Ran Z L, Bao H H, Cook K, et al. Combined regenerated fibre Bragg gratings and Fabry-Perot etalons for dual strain and temperature sensing[J]. Proceedings of SPIE, 2015, 9634: 963459.

[28] Rao Y J, Ran Z L, Liao X, et al. Hybrid LPFG/MEFPI sensor for simultaneous measurement of high-temperature and strain[J]. Proceedings of SPIE, 2008, 7004: 70043H.

[29] Rao Y J, Ran Z L. Optic fiber sensors fabricated by laser-micromachining[J]. Optical Fiber Technology, 2013, 19(6): 808-821.

[30] Ran Z L, Liu S, Liu Q, et al. Novel high-temperature fiber-optic pressure sensor based on etched PCF F-P interferometer micromachined by a 157-nm laser[J]. IEEE Sensors Journal, 2015, 15(7): 3955-3958.

[31] Liu Y, Qu S L. Optical fiber Fabry-Perot interferometer cavity fabricated by femtosecond laser-induced water breakdown for refractive index sensing[J]. Applied Optics, 2014, 53(3): 469-474.

[32] Liu Y, Li M, Zhao P J, et al. High sensitive temperature sensor based on a polymer waveguide integrated in an optical fibre micro-cavity[J]. Journal of Optics, 2018, 20(1): 015801.

[33] Li M, Liu Y, Gao R X, et al. Ultracompact fiber sensor tip based on liquid polymer-filled Fabry-Perot cavity with high temperature sensitivity[J]. Sensors and Actuators B: Chemical, 2016, 233: 496-501.

[34] Cao K J, Liu Y, Qu S L. Compact fiber biocompatible temperature sensor based on a hermetically-sealed liquid-filling structure[J]. Optics Express, 2017, 25(24): 29597-29604.

[35] Wallace J. Femtosecond laser carves refractive-index-sensing F-P cavity in optical fiber[J]. Laser Focus World, 2014, 50(2): 11-20.

[36] Wallace J. Technology review: top 20 technologies for 2014 cover the range from basic R&D to new apps[J]. Laser Focus World, 2014, 50(12): 25-36.

[37] Mao G P, Sun B, Yuan T T, et al. Fabrication of fiber Bragg gratings in embedded-core hollow optical fiber[J]. Proceedings of SPIE, 2015, 9655: 96552Z.

[38] Xu X Z, He J, Liao C R, et al. Sapphire fiber Bragg gratings inscribed with a femtosecond laser line-by-line scanning technique[J]. Optics Letters, 2018, 43(19): 4562-4565.

[39] Wang Q H, Wang D, Zhang H. Fiber Bragg grating with a waveguide fabricated in no-core fiber and multimode fiber[J]. Optics Letters, 2019, 44(11): 2693-2696.

[40] Wolf A A, Dostovalov A V, Bronnikov K, et al. Arrays of fiber Bragg gratings selectively inscribed in different cores of 7-core spun optical fiber by IR femtosecond laser pulses[J]. Optics Express, 2019, 27(10): 13978-13990.

[41] Liu X Y, Wang Y P, Li Z L, et al. Low short-wavelength loss fiber Bragg gratings inscribed in a small-core fiber by femtosecond laser point-by-point technology[J]. Optics Letters, 2019, 44(21): 5121-5124.

[42] Dai Y, Wu G R, Lin X, et al. Femtosecond laser induced rotated 3D self-organized nanograting in fused silica[J]. Optics Express, 2012, 20(16): 18072-18078.

[43] Ma Y C, Wang L, Guan K M, et al. Silicon-based suspended structure fabricated by femtosecond laser direct writing and wet etching[J]. IEEE Photonics Technology Letters, 2016, 28(15): 1605-1608.

[44] Liu X Q, Yu L, Chen Q D, et al. Mask-free construction of three-dimensional silicon structures by dry etching assisted gray-scale femtosecond laser direct writing[J]. Applied Physics Letters, 2017, 110(9): 091602.

[45] Grenier J R. FernandesL A, Herman P R. Femtosecond laser writing of optical edge filters in fused silica optical waveguides[J]. Optics Express, 2013, 21(4): 4493-4502.

[46] Pospiech M, Emons M, Steinmann A, et al. Double waveguide couplers produced by simultaneous femtosecond writing[J]. Optics Express, 2009, 17(5): 3555-3563.

[47] Riesen N, Gross S, Love J D, et al. Femtosecond direct-written integrated mode couplers[J]. Optics Express, 2014, 22(24): 29855-29861.

[48] Liu X, Qu S, Tan Y, et al. Buried channel waveguides in neodymium-doped KGd(WO4)2 fabricated by low-repetition-rate femtosecond laser writing[J]. Applied Physics B, 2011, 103(1): 145-149.

[49] Liu X Y, Qu S L, Tan Y, et al. Preservation of fluorescence and Raman gain in the buried channel waveguides in neodymium-doped KGd(WO4)2(Nd∶KGW) by femtosecond laser writing[J]. Applied Optics, 2011, 50(6): 930-934.

[50] Li W, Wang D. Femtosecond laser inscribed straight waveguide in no-core fiber for in-line Mach-Zehnder interferometer construction[J]. Optics Letters, 2018, 43(14): 3405-3408.

[51] Liu Y, Qu S L. Femtosecond laser pulses induced ultra-long-period fiber gratings for simultaneous measurement of high temperature and refractive index[J]. Optik, 2013, 124(12): 1303-1306.

[52] Deng J, Wang D N. Construction of cascaded Fabry-Perot interferometers by four in-fiber mirrors for high-temperature sensing[J]. Optics Letters, 2019, 44(5): 1289-1292.

[53] Wang Q H, Zhang H, Wang D N. Cascaded multiple Fabry-Perot interferometers fabricated in no-core fiber with a waveguide for high-temperature sensing[J]. Optics Letters, 2019, 44(21): 5145-5148.

[54] Kaiser W. Garrett C G B. Two-photon excitation in CaF2∶Eu 2+[J]. Physical Review Letters, 1961, 7(6): 229-231.

[55] KawataS, Sun H B. Two-photon photopolymerization as a tool for making micro-devices[J]. Applied Surface Science, 2003, 208/209: 153- 158.

[56] Li M, Liu Y, Zhao X L, et al. Miniature-shaped polymer fiber tip for simultaneous measurement of the liquid refractive index and temperature with high sensitivities[J]. Journal of Optics, 2015, 17(10): 105701.

[57] Li M, Liu Y, Zhao X L, et al. High sensitivity fiber acoustic sensor tip working at 1550 nm fabricated by two-photon polymerization technique[J]. Sensors and Actuators A: Physical, 2017, 260: 29-34.

[58] Wang J, Lin C P, Liao C R, et al. Bragg resonance in microfiber realized by two-photon polymerization[J]. Optics Express, 2018, 26(4): 3732-3737.

[59] Lin C P, Liao C R, Wang J, et al. Fiber surface Bragg grating waveguide for refractive index measurements[J]. Optics Letters, 2017, 42(9): 1684-1687.

[60] Li C, Liao C R, Wang J, et al. Femtosecond laser microprinting of a polymer fiber Bragg grating for high-sensitivity temperature measurements[J]. Optics Letters, 2018, 43(14): 3409-3412.

[61] Zwaan E, le Gac S, Tsuji K, et al. Controlled cavitation in microfluidic systems[J]. Physical Review Letters, 2007, 98(25): 254501.

[62] Dijkink R, Ohl C D. Laser-induced cavitation based micropump[J]. Lab on a Chip, 2008, 8(10): 1676-1681.

[63] Noack J, Hammer D X, Noojin G D, et al. Influence of pulse duration on mechanical effects after laser-induced breakdown in water[J]. Journal of Applied Physics, 1998, 83(12): 7488-7495.

[64] Vogel A, Linz N, Freidank S, et al. Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery[J]. Physical Review Letters, 2008, 100(3): 038102.

[65] Akhatov I S, Lindau O, Topolnikov A S, et al. Collapse and rebound of a laser-induced cavitation bubble[J]. Physics of Fluids, 2001, 13(10): 2805-2819.

[66] Li Y, Itoh K, Watanabe W, et al. Three-dimensionalhole drilling of silica glass from the rear surface with femtosecond laser pulses[J]. Optics Letters, 2001, 26(23): 1912-1914.

[67] An R, Li Y, Dou Y P, et al. Laser micro-hole drilling of soda-lime glass with femtosecond pulses[J]. Chinese Physics Letters, 2004, 21(12): 2465-2468.

[68] Hwang D J, Choi T Y, Grigoropoulos C P. Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass[J]. Applied Physics A, 2004, 79(3): 605-612.

[69] An R, Li Y, Dou Y P, et al. Simultaneous multi-microhole drilling of soda-lime glass by water-assisted ablation with femtosecond laser pulses[J]. Optics Express, 2005, 13(6): 1855-1859.

[70] Li C X, Shi X, Si J H, et al. Fabrication of three-dimensional microfluidic channels in glass by femtosecond pulses[J]. Optics Communications, 2009, 282(4): 657-660.

[71] Li Y, Qu S L. Femtosecond laser-induced breakdown in distilled water for fabricating the helical microchannels array[J]. Optics Letters, 2011, 36(21): 4236-4238.

[72] Li Y, Qu S L, Guo Z Y. Fabrication of microfluidic devices in silica glass by water-assisted ablation with femtosecond laser pulses[J]. Journal of Micromechanics and Microengineering, 2011, 21(7): 075008.

[73] Li Y, Qu S L. Water-assisted femtosecond laser ablation for fabricating three-dimensional microfluidic chips[J]. Current Applied Physics, 2013, 13(7): 1292-1295.

[74] Liu Y, Qu S L, Li Y. Liquid refractive index sensor with three-cascaded microchannels in single-mode fiber fabricated by femtosecond laser-induced water breakdown[J]. Applied Physics B, 2013, 110(4): 585-589.

[75] Liu Y, Qu S L, Li Y. Single microchannel high-temperature fiber sensor by femtosecond laser-induced water breakdown[J]. Optics Letters, 2013, 38(3): 335-337.

[76] Liu Y, Qu S L. H-type microchannel fiber humidity sensor by femtosecond laser-induced water breakdown[J]. Journal of Modern Optics, 2014, 61(19): 1578-1581.

[77] Liu Y, Li M, Sun H H, et al. Ultrasensitive liquid refractometer based on a Mach-Zehnder micro-cavity in optical fibre fabricated by femtosecond laser-induced water breakdown[J]. Journal of Modern Optics, 2016, 63(21): 2285-2290.

[78] Liu Y, Wu G Q, Gao R X, et al. High-quality Mach-Zehnder interferometer based on a microcavity in single-multi-single mode fiber structure for refractive index sensing[J]. Applied Optics, 2017, 56(4): 847-853.

李金健, 刘一, 曲士良. 飞秒激光微纳加工光纤功能器件研究进展[J]. 激光与光电子学进展, 2020, 57(11): 111402. Jinjian Li, Yi Liu, Shiliang Qu. Research Progress on Optical Fiber Functional Devices Fabricated by Femtosecond Laser Micro-Nano Processing[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111402.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!