激光与光电子学进展, 2017, 54 (11): 111401, 网络出版: 2017-11-17   

一种可产生高带宽混沌的外腔半导体激光器的设计及其动态特性 下载: 507次

Design and Dynamic Characteristics of an External-Cavity Semiconductor Laser Generating Wide Bandwidth Chaos
王永胜 1,2赵彤 1,2王安帮 1,2张明江 1,2王云才 1,2,*
作者单位
1 太原理工大学新型传感器与智能控制教育部重点实验室, 山西 太原 030024
2 太原理工大学物理与光电工程学院光电工程研究所,山西 太原 030024
摘要
设计一种新型的可产生高带宽混沌的面向蝶形封装的外腔半导体激光器,并在理论上研究了反馈率、注入电流比和载流子寿命对其动态特性的影响。数值仿真结果表明,调节反馈率或增加注入电流比时,该结构的输出光经历从稳定状态、准周期状态、混沌状态再到稳定状态的周期演化。增大注入电流比或减小载流子寿命时,外腔激光器的弛豫振荡频率增大。在大弛豫振荡频率和大外腔振荡频率下,能够生成有效带宽高达70 GHz的混沌。分析了这种高带宽混沌生成的机理,也为高速随机数的生成提供了新的熵源。此外,在弱光反馈下,尝试利用激光器的弛豫振荡来掩盖反馈的时延特征,并分析了时延对外腔振荡频率的影响。
Abstract
A novel external-cavity semiconductor laser faced to butterfly packaging which can generate wide bandwidth chaos is designed, and the influences of feedback ratio, injection current ratio and carrier lifetime on dynamic performance of the designed structure are investigated. Numerical simulation results demonstrate that diversely dynamical states including the stable state, as well as the so-called period-one, and chaotic states can be observed when the feedback ratio is adjusted or the injection current ratio is increased. The relaxation oscillation frequency of the external-cavity semiconductor laser rises with the increasing injection current ratio or the decreasing carrier lifetime. So it is much easier to generate chaotic signal with effective bandwidth of 70 GHz when the relaxation oscillation frequency and oscillation frequency of the external-cavity are at high level. The mechanism to generate such a chaos with wide bandwidth is analyzed, which provides a new source of entropy for the generation of random number. In addition, we use the relaxation oscillation of laser to cover time delay characteristics of feedback when the feedback is weak, and analyze the influence of feedback time delay on the dynamics of oscillation frequency of the external-cavity.
参考文献

[1] Sciamanna M, Shore K A. Physics and applications of laser diode chaos[J]. Nature Photonics, 2015, 9(3): 151-162.

[2] Argyris A, Syvridis D, Larger L, et al. Chaos-based communications at high bit rates using commercial fibre-optic links[J]. Nature, 2005, 438(7066): 343-346.

[3] Soriano M C, García-Ojalvo J, Mirasso C R, et al. Complex photonics: Dynamics and applications of delay-coupled semiconductors lasers[J]. Reviews of Modern Physics, 2013, 85(1): 421-470.

[4] 方捻, 王陆唐, 郭淑琴, 等. 偏振态移位键控光混沌通信系统的保密性[J]. 光学学报, 2006, 26(6): 812-817.

    Fang Nian, Wang Lutang, Guo Shuqin, et al. Security of polarization-shift keying chaos optical communication system[J]. Acta Optica Sinica, 2006, 26(6): 812-817

[5] 刘金刚, 沈柯, 周立伟. 光学双稳系统混沌驱动保密通讯原理研究[J]. 光学学报, 1997, 17(11): 1473-1478.

    Liu Jingang, Shen Ke, Zhou Liwei. Study on mechanism of secure communication with driven chaos masking in optical bistable system[J]. Acta Optica Sinica, 1997, 17(11): 1473-1478.

[6] 潘兴茂, 吴正茂, 唐曦, 等. 基于互耦半导体激光器的混沌网状网络的同步与通信[J]. 中国激光, 2013, 40(12): 1202005.

    Pan Xingmao, Wu Zhengmao, Tang Xi, et al. Chaos synchronization and communication in mesh network based on mutually coupled semiconductor lasers[J]. Chinese J Lasers, 2013, 40(12): 1202005.

[7] 王斐斐, 张丽, 杨玲珍, 等. 基于混沌光纤激光的准分布式布拉格传感网络[J]. 光学学报, 2014, 34(8): 0806006.

    Wang Feifei, Zhang Li, Yang Lingzhen, et al. Quasi-distributed fiber Bragg grating sensing network based on fiber chaotic laser[J]. Acta Optica Sinica, 2014, 34(8): 0806006.

[8] Uchida A, Amano K, Inoue M, et al. Fast physical random bit generation with chaotic semiconductor lasers[J]. Nature Photonics, 2008, 2(12): 728-732.

[9] Reidler I, Aviad Y, Rosenbluh M, et al. Ultrahigh-speed random number generation based on a chaotic semiconductor laser[J]. Physical Review Letters, 2009, 103(2): 024102.

[10] 李璞, 王云才. 面向高速保密通信的激光混沌物理随机数发生器研究进展[J]. 激光与光电子学进展, 2014, 51(6): 060002.

    Li Pu, Wang Yuncai. Research progress in physical random number generator based on laser chaos for high-speed secure communication[J]. Laser & Optoelectronics Progress, 2014, 51(6): 060002.

[11] 鄢秋荣, 曹青山, 赵宝升, 等. 基于数字化带宽增强混沌激光信号的高速随机源[J]. 中国激光, 2015, 42(11): 1102004.

    Yan Qiurong, Cao Qingshan, Zhao Baosheng, et al. High speed random number generator based on digitizing bandwidth-enhanced chaotic laser signal[J]. Chinese J Lasers, 2015, 42(11): 1102004.

[12] Lin F Y, Liu J M. Chaotic radar using nonlinear laser dynamics[J]. IEEE Journal of Quantum Electronics, 2004, 40(6): 815-820.

[13] Lin F Y, Liu J M. Chaotic lidar[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2004, 10(5): 991-997.

[14] Wang A, Wang N, Yang Y, et al. Precise fault location in WDM-PON by utilizing wavelength tunable chaotic laser[J]. Journal of Lightwave Technology, 2012, 30(21): 3420-3426.

[15] Wang Y, Wang B, Wang A. Chaotic correlation optical time domain reflectometer utilizing laser diode[J]. IEEE Photonics Technology Letters, 2008, 20(19): 1636-1638.

[16] Koch T L, Koren U. Semiconductor photonic integrated circuits[J]. IEEE Journal of Quantum Electronics, 2002, 27(3): 641-653.

[17] Charbonneau S, Koteles E S, Poole P J, et al. Photonic integrated circuits fabricated using ion implantation[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1998, 4(4): 772-793.

[18] Hofstetter D, Maisenholder B, Zappe H P. Quantum-well intermixing for fabrication of lasers and photonic integrated circuits[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 4(4): 794-802.

[19] Bauer S, Brox O, Kreissl J, et al. Nonlinear dynamics of semiconductor lasers with active optical feedback[J]. Physical Review E, 2004, 69(2): 016206.

[20] Ushakov O, Bauer S, Brox O, et al. Self-organization in semiconductor lasers with ultrashort optical feedback[J]. Physical Review Letters, 2004, 92(4): 043902.

[21] Yousefi M, Barbarin Y, Beri S, et al. New role for nonlinear dynamics and chaos in integrated semiconductor laser technology[J]. Physical Review Letters, 2007, 98(4): 044101.

[22] Argyris A, Hamacher M, Chlouverakis K E, et al. Photonic integrated device for chaos applications in communications[J]. Physical Review Letters, 2008, 100(19): 194101.

[23] Tronciu V Z, Ermakov I V, Colet P, et al. Chaotic dynamics of a semiconductor laser with double cavity feedback: Applications to phase shift keying modulation[J]. Optics Communications, 2008, 281(18): 4747-4752.

[24] Harayama T, Sunada S, Yoshimura K, et al. Fast nondeterministic random-bit generation using on-chip chaos lasers[J]. Physical Review A, 2011, 83(3): 622-624.

[25] Sunada S, Harayama T, Arai K, et al. Chaos laser chips with delayed optical feedback using a passive ring waveguide[J]. Optics Express, 2011, 19(7): 5713-5724.

[26] Wu J G, Zhao L J, Wu Z M, et al. Direct generation of broadband chaos by a monolithic integrated semiconductor laser chip[J]. Optics Express, 2013, 21(20): 23358-23364.

[27] Liu D, Sun C, Xiong B, et al. Nonlinear dynamics in integrated coupled DFB lasers with ultra-short delay[J]. Optics Express, 2014, 22(5): 5614-5622.

[28] Yu L, Lu D, Pan B, et al. Monolithically integrated amplified feedback lasers for high-quality microwave and broadband chaos generation[J]. Journal of Lightwave Technology, 2014, 32(20): 3595-3601.

[29] Yee D S, Leem Y A, Kim S B, et al. Loss-coupled distributed-feedback lasers with amplified optical feedback for optical microwave generation[J]. Optics Letters, 2004, 29(19): 2243-2245.

[30] Argyris A, Deligiannidis S, Pikasis E, et al. Implementation of 140 Gb/s true random bit generator based on a chaotic photonic integrated circuit[J]. Optics Express, 2010, 18(18): 18763-18768.

[31] Takahashi R, Akizawa Y, Uchida A, et al. Fast physical random bit generation with photonic integrated circuits with different external cavity lengths for chaos generation[J]. Optics Express, 2014, 22(10): 11727-11740.

[32] Wünsche H J, Bauer S, Kreissl J, et al. Synchronization of delay-coupled oscillators: A study of semiconductor lasers[J]. Physical Review Letters, 2005, 94(16): 163901.

[33] Perez T, Radziunas M, Wunsche H J, et al. Synchronization properties of two coupled multisection semiconductor lasers emitting chaotic light[J]. IEEE Photonics Technology Letters, 2006, 18(20): 2135-2137.

[34] Argyris A, Grivas E, Hamacher M, et al. Chaos-on-a-chip secures data transmission in optical fiber links[J]. Optics Express, 2010, 18(5): 5188-5198.

[35] Monfils I, Cartledge J C. Detailed theoretical and experimental characterization of 10 Gb/s clock recovery using a Q-switched self-pulsating laser[J]. Journal of Lightwave Technology, 2009, 27(5): 619-626.

[36] Sun Y, Pan J Q, Zhao L J, et al. All-optical clock recovery for 20 Gb/s using an amplified feedback DFB laser[J]. Journal of Lightwave Technology, 2010, 28(17): 2521-2525.

[37] Sunada S, Shinohara S, Fukushima T, et al. Signature of wave chaos in spectral characteristics of microcavity lasers[J]. Physical Review Letters, 2016, 116(20): 203903.

[38] Cartledge J C, Srinivasan R C. Extraction of DFB laser rate equation parameters for system simulation purposes[J]. Journal of Lightwave Technology, 1997, 15(5): 852-860.

[39] Bjerkan L, Royset A, Hafskjaer L, et al. Measurement of laser parameters for simulation of high-speed fiberoptic systems[J]. Journal of Lightwave Technology, 1996, 14(5): 839-850.

[40] Wen Y F. Extraction of semiconductor laser rate equation parameters for simulation of fiber-optical communication system purpose[D]. Hamilton: McMaster University, 2012.

王永胜, 赵彤, 王安帮, 张明江, 王云才. 一种可产生高带宽混沌的外腔半导体激光器的设计及其动态特性[J]. 激光与光电子学进展, 2017, 54(11): 111401. Wang Yongsheng, Zhao Tong, Wang Anbang, Zhang Mingjiang, Wang Yuncai. Design and Dynamic Characteristics of an External-Cavity Semiconductor Laser Generating Wide Bandwidth Chaos[J]. Laser & Optoelectronics Progress, 2017, 54(11): 111401.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!