光电子快报(英文版), 2023, 19 (3): 155, Published Online: Mar. 18, 2023  

Effect of growth interruption time on the quality of InAs/GaSb type-II superlattice grown by molecular beam epitaxy

Author Affiliations
1 School of Opto-Electronic Engineering, Changchun University of Science and Technology, Changchun 130022, China
2 Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science & Technology University, Beijing 100192, China
Abstract
We systematically investigate the influence of growth interruption time on the properties of InAs/GaSb type-II superlattices (T2SLs) epitaxial materials grown by molecular beam epitaxy (MBE). X-ray diffraction (XRD) and atomic force microscope (AFM) are used to characterize the material quality and morphology. The full width at half maximum (FWHM) of the XRD 0th satellite peaks ranges from 32'' to 41'', and the root mean square (RMS) roughness on a 5 μm×5 μm scan area is 0.2 nm. Photoluminescence (PL) test is used to reveal the influence of the growth interruption time on the optical property. Grazing incidence X-ray reflectivity (GIXRR) measurements are performed to analyze the roughness of the interface. The interface roughness (0.24 nm) is optimal when the interruption time is 0.5 s. The crystal quality of T2SLs can be optimized with appropriate interruption time by MBE, which is a guide for the material epitaxy of high performance T2SL infrared detector.
References

[1] JASIK A, SANKOWSKA I, PIERSCINSKA D, et al. Blueshift of bandgap energy and reduction of non-radiative defect density due to precise control of InAs-on-GaSb interface in type-II InAs/GaSb superlattice[J]. Journal of applied physics, 2011, 110(12): 123103.

[2] KLEIN B, NUTAN G, ELENA P, et al. Carrier lifetime studies in midwave infrared type-II InAs/GaSb strained layer superlattice[J]. Journal of vacuum science & technology B, 2014, 32(2): 02C101.

[3] ALSHAHRANI D O, KESARIA M, ANYEBE E A, et al. Emerging type-II superlattices of InAs/InAsSb and InAs/GaSb for mid-wavelength infrared photodetectors[J]. Advanced photonics research, 2021, 3(2).

[4] RODRIGUEZ J B, CHRISTOL P, CERUTTI L, et al. MBE growth and characterization of type-II InAs/GaSb superlattices for mid-infrared detection[J]. Journal of crystal growth, 2005, 274(1-2): 6-13.

[5] MAGRI R, ZUNGER A. Effects of interfacial atomic segregation and intermixing on the electronic properties of InAs/GaSb superlattices[J]. Physical review B, 2002, 65(16): 5302.

[6] LI H, ZHANG Q, QI X, et al. High resolution X-ray diffraction study in InAs/GaSb superlattice[J]. Ferroelectrics, 2022, 596(1): 86-94.

[7] YU H L, WU H Y, ZHU H J, et al. Molecular beam epitaxy of zero lattice-mismatch InAs/GaSb type-II superlattice[J]. Chinese physics letters, 2016, 33(12): 128103.

[8] SU D H, XU Y, WANG W X, et al. Growth control of high-performance InAs/GaSb type-II superlattices via optimizing the In/Ga beam-equivalent pressure ratio[J]. Chinese physics letters, 2020, 37(3): 037301.

[9] : WEI Y, MA W Q, ZHANG Y H, et al. High structural quality of type II InAs/GaSb superlattices for very long wavelength infrared detection by interface control[J]. IEEE journal of quantum electronics, 2012, 48(4): 512-515.

[10] LI B, NIU Y X, FENG Y D, et al. Ultra-low dark count InGaAs/InP single photon avalanche diode[J]. Optoelectronics letters, 2022, 18(11): 647-650.

[11] LI X C, JIANG D W, ZHANG Y, et al. Interface optimization and fabrication of InAs/GaSb type II superlattice for very long wavelength infrared photodetectors[J]. Superlattices and microstructures, 2016, 91: 238-243.

[12] LIU Y F, ZHANG C J, WANG X B, et al. Interface investigation of InAs/GaSb type II superlattice for long wavelength infrared photodetectors[J]. Infrared physics & technology, 2021, 113.

[13] XU Z C, CHEN J X, WANG F F, et al. Interface layer control and optimization of InAs/GaSb type-IIsuperlattices grown by molecular beam epitaxy[J]. Journal of crystal growth, 2014, 386: 220-225.

[14] DELMAS M, DEBNATH M C, LIANG B L, et al. Material and device characterization of type-II InAs/GaSb superlattice infrared detectors[J]. Infrared physics & technology, 2018, 94: 286-290.

[15] QIAO P F, MOU S, CHUANG S L. Electronic band structures and optical properties of type-II superlattice photodetectors with interfacial effect[J]. Optics express, 2012, 20(3): 2319-2334.

[16] LI C L, FANG D, ZHANG J, et al. Surface morphologies of InAs/GaSb type-II superlattice materials obtained via growth interruption method[J]. Acta optica sinica, 2019, 39(9): 286-290. (in Chinese)

[17] JIANG J K, LI Y, CHANG F R, et al. MBE growth of mid-wavelength infrared photodetectors based on high quality InAs/AlAs/InAsSb superlattice[J]. Journal of crystal growth, 2021, 564(15): 126109.

[18] LIU Z J, ZHU L Q, ZHENG X T, et al. Interface effect on superlattice quality and optical properties of InAs/GaSb type-II superlattices grown by molecular beam epitaxy[J]. Chinese physics B, 2022, 31: 128503.

[19] SHAO J, LU W, LU X, et al. Modulated photoluminescence spectroscopy with a step-scan Fourier transform infrared spectrometer[J]. Review of scientific instruments, 2006, 77: 063104.

LIU Zhaojun, ZHU Lianqing, ZHENG Xiantong, LU Lidan, ZHANG Dongliang, and LIU Yuan. Effect of growth interruption time on the quality of InAs/GaSb type-II superlattice grown by molecular beam epitaxy[J]. 光电子快报(英文版), 2023, 19(3): 155.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!