光子学报, 2017, 46 (8): 0816004, 网络出版: 2017-10-30   

石墨烯和对称开口谐振环超材料中可调谐的双等离激元诱导透明现象

Tunable Double Plasmon-Induced Transparency Windowsin Metamaterial Formed by Symmetric Graphene and Split Ring Resonators Structure
作者单位
1 上海大学 物理系,上海 200444
2 吉林大学 物理学院 相干光与原子分子光谱教育部重点实验室,长春 130012
引用该论文

范天馨, 张惠芳, 李勇, 何英, 王燕, 苏雪梅. 石墨烯和对称开口谐振环超材料中可调谐的双等离激元诱导透明现象[J]. 光子学报, 2017, 46(8): 0816004.

FAN Tian-xin, ZHANG Hui-fang, LI Yong, HE Ying, WANG Yang, SUN Xue-mei. Tunable Double Plasmon-Induced Transparency Windowsin Metamaterial Formed by Symmetric Graphene and Split Ring Resonators Structure[J]. ACTA PHOTONICA SINICA, 2017, 46(8): 0816004.

参考文献

[1] HARRIS S E. Electromagnetically induced transparency[J]. Physics Today, 1997, 50(7): 36-42.

[2] BOLLER K J, IMAMOGLU A, HARRIS S E. Observation of electromagnetically induced transparency[J]. Physical Review Letters, 1991, 66(20): 2593.

[3] ZHANG Shuang. Plasmon-induced transparency in metamaterials[J]. Physical Review Letters, 2008, 101(4): 047401.

[4] JING Hui-hui. Plasmon-induced transparency in terahertz metamaterials[J]. Science China Information Sciences, 2013, 56(12): 1-18.

[5] FU Guang-lai. Tunable plasmon-induced transparency based on bright-bright mode coupling between two parallel graphene nanostrips[J]. Plasmonics, 2016, 11(6): 1597-1602.

[6] HARRIS S E, HAU L V. Nonlinear optics at low light levels[J]. Physical Review Letters, 1999, 82(23): 4611.

[7] KRAUSS T F. Why do we need slow light [J]. Nature Photonics, 2008, 2(8): 448-450.

[8] MONAT C, DE STERKE M, EGGLETON B J. Slow light enhanced nonlinear optics in periodic structures[J]. Journal of Optics, 2010, 12(10): 104003.

[9] BOYD R W. Material slow light and structural slow light: similarities and differences for nonlinear optics[J]. Journal of the Optical Society of America B, 2011, 28(12): A38-A44.

[10] PHILLIPS D F, FLEISCHHAUER A, MAIR A, et al. Storage of light in atomic vapor[J]. Physical Review Letters, 2001, 86(5): 783.

[11] LIU C, DUTTON Z, BEHROOZI C H, et al. Observation of coherent optical information storage in an atomic medium using halted light pulses[J]. Nature, 2001, 409(6819): 490-493.

[12] FLEISCHHAUER M, IMAMOGLU A, MARANGOS J P. Electromagnetically induced transparency: Optics in coherent media[J]. Reviews of Modern Physics, 2005, 77(2): 633.

[13] LI Xiao-li, MENG Xu-dong, WU Yan-hua, et al. The Transformation from electromagnetically induced transpareency to lasing without population inversion based on spontaneously generated coherence[J]. Acta Photonica Sinica, 2014, 43(8): 0819002.

[14] CHIAM S Y, SINGH R, ROCKSTUHL C, et al. Analogue of electromagnetically induced transparency in a terahertz metamaterial[J]. Physical Review B, 2009, 80(15): 153103.

[15] SINGH R, ROCKSTUHL C, LEDERER F, et al. Coupling between a dark and a bright eigenmode in a terahertz metamaterial[J]. Physical Review B, 2009, 79(8): 085111.

[16] LIU Xiao-jun. Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode[J]. Applied Physics Letters, 2012, 100(13): 131101.

[17] TAUBERT R, HENTSCHEL M, et al. Classical analog of electromagnetically induced absorption in plasmonics[J]. Nano Letters, 2012, 12(3): 1367-1371.

[18] DONG Zheng-gao. Plasmonically induced transparent magnetic resonance in a metallic metamaterial composed of asymmetric double bars[J]. Optics Express, 2010, 18(17): 18229-18234.

[19] ZHANG Jing-jing. Electromagnetically induced transparency in metamaterials at near-infrared frequency[J]. Optics Express, 2010, 18(16): 17187-17192.

[20] LIU Na. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit[J]. Nature Materials, 2009, 8(9): 758-762.

[21] GEIM A K, NOVOSELOV K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183-191.

[22] ROUHI N, CAPDEVILA S, JAIN D, et al. Terahertz graphene optics[J]. Nano Research, 2012, 5(10): 667-678.

[23] VAKIL A, ENGHETA N. Transformation optics using graphene[J]. Science, 2011, 332(6035): 1291-1294.

[24] JU Long. Graphene plasmonics for tunable terahertz metamaterials[J]. Nature nanotechnology, 2011, 6(10): 630-634.

[25] KOPPENS F H L, CHANG D E, et al. Graphene plasmonics: a platform for strong light-matter interactions[J]. Nano Letters, 2011, 11(8): 3370-3377.

[26] ZHU Jun, QIN Liu-li, FU De-li, SONG Hu-xiang. Design of folds graphene waveguide excited surface plasmon polaritons[J]. Acta Photonica Sinica, 2016, 45(2): 0224003

[27] ZHAO Xiao-lei. Plasmon-induced transparency in metamaterial based on graphene and split-ring resonators[J]. IEEE Photonics Technology Letters, 2015, 27(12): 1321-1324.

[28] BA Nuo, WANG Lei, WU Xiang-yao, et al. Tunable photonic bandgap based on electromagnetically induced transparency in one dimensional atomic lattices[J]. Acta Photonica Sinica, 2015, 44(6): 0627002

[29] YIN Xiao-gang. Tailoring electromagnetically induced transparency for terahertz metamaterials: From diatomic to triatomic structural molecules[J]. Applied Physics Letters, 2013, 103(2): 021115.

[30] HARRIS S E, YAMAMOTO Y. Photon switching by quantum interference[J]. Physical Review Letters, 1998, 81(17): 3611.

[31] LUKIN M D, YELIN S F, FLEISCHHAUERM, et al. Quantum interference effects induced by interacting dark resonances[J]. Physical Review A, 1999, 60(4): 3225.

[32] XU H, LU Y, LEE Y P, et al. Studies of electromagnetically induced transparency in metamaterials[J]. Optics Express, 2010, 18(17): 17736-17747.

[33] HANSON G W. Dyadic Green′s functions and guided surface waves for a surface conductivity model of graphene[J]. Journal of Applied Physics, 2008, 103(6): 064302.

[34] NOVOSELOV K S, FAL V I, COLOMBO L, et al. A roadmap for graphene[J]. Nature, 2012, 490(7419): 192-200.

[35] NOVOSELOV K S. Room-temperature quantum Hall effect in graphene[J]. Science, 2007, 315(5817): 1379-1379.

[36] DONG Zheng-gao. Role of asymmetric environment on the dark mode excitation in metamaterial analogue of electromagnetically-induced transparency[J]. Optics Express, 2010, 18(21): 22412-22417.

范天馨, 张惠芳, 李勇, 何英, 王燕, 苏雪梅. 石墨烯和对称开口谐振环超材料中可调谐的双等离激元诱导透明现象[J]. 光子学报, 2017, 46(8): 0816004. FAN Tian-xin, ZHANG Hui-fang, LI Yong, HE Ying, WANG Yang, SUN Xue-mei. Tunable Double Plasmon-Induced Transparency Windowsin Metamaterial Formed by Symmetric Graphene and Split Ring Resonators Structure[J]. ACTA PHOTONICA SINICA, 2017, 46(8): 0816004.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!