Chinese Optics Letters, 2021, 19 (9): 091301, Published Online: Aug. 26, 2021   

Mode division multiplexing: from photonic integration to optical fiber transmission [Invited] Download: 881次

Author Affiliations
State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai 200240, China
Copy Citation Text

Jiangbing Du, Weihong Shen, Jiacheng Liu, Yufeng Chen, Xinyi Chen, Zuyuan He. Mode division multiplexing: from photonic integration to optical fiber transmission [Invited][J]. Chinese Optics Letters, 2021, 19(9): 091301.

References

[1] S. Berdagué, P. Facq. Mode division multiplexing in optical fibers. Appl. Opt., 1982, 21: 1950.

[2] C. Sun, M. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanović, R. J. Ram, M. A. Popović, V. M. Stojanović. Single-chip microprocessor that communicates directly using light. Nature, 2015, 528: 534.

[3] GuptaS. C., Textbook on Optical fiber Communication and Its Applications (PHI Learning Pvt. Ltd., 2018).

[4] P. J. Winzer. Scaling optical fiber networks: challenges and solutions. Opt. Photon. News, 2015, 26: 28.

[5] D. Richardson, J. Fini, L. Nelson. Space-division multiplexing in optical fibres. Nat. Photon., 2013, 7: 354.

[6] T. Mizuno, H. Takara, K. Shibahara, A. Sano, Y. Miyamoto. Dense space division multiplexed transmission over multicore and multimode fiber for long-haul transport systems. J. Lightwave Technol., 2016, 34: 1484.

[7] HamaokaF.MinoguchiK.SasaiT.MatushitaA.NakamuraM.OkamotoS.YamazakiE.KisakaY., “150.3-Tb/s ultra-wideband (S, C, and L bands) single-mode fibre transmission over 40-km using >519 Gb/s/A PDM-128QAM signals,” in European Conference on Optical Communication (ECOC) (2018).

[8] RademacherG.PuttnamB. J.LuísR. S.SakaguchiJ.KlausW.ErikssonT. A.AwajiY.HayashiT.NagashimaT.NakanishiT.TaruT.TakahataT.KobayashiT.FurukawaH.WadaN., “10.66 peta-bit/s transmission over a 38-core-three-mode fiber,” in Optical Fiber Communication Conference (OFC) (2020).

[9] T. Uematsu, Y. Ishizaka, Y. Kawaguchi, K. Saitoh, M. Koshiba. Design of a compact two-mode multi/demultiplexer consisting of multimode interference waveguides and a wavelength-insensitive phase shifter for mode-division multiplexing transmission. J. Lightwave Technol., 2012, 30: 2421.

[10] J. Driscoll, R. Grote, B. Souhan, J. Dadap, M. Lu, R. Osgood. Asymmetric Y junctions in silicon waveguides for on-chip mode-division multiplexing. Opt. Lett., 2013, 38: 1854.

[11] W. Chen, P. Wang, J. Yang. Mode multi/demultiplexer based on cascaded asymmetric Y-junctions. Opt. Express, 2013, 21: 25113.

[12] J. Xing, Z. Li, X. Xiao, J. Yu, Y. Yu. Two-mode multiplexer and demultiplexer based on adiabatic couplers. Opt. Lett., 2013, 38: 3468.

[13] C. Sun, Y. Yu, G. Chen, X. Zhang. Silicon mode multiplexer processing dual-path mode-division multiplexing signals. Opt. Lett., 2016, 41: 5511.

[14] M. Greenberg, M. Orenstein. Multimode add-drop multiplexing by adiabatic linearly tapered coupling. Opt. Express, 2005, 13: 9381.

[15] D. Dai, C. Li, S. Wang, H. Wu, Y. Shi, Z. Wu, S. Gao, T. Dai, H. Yu, H. Tsang. 10-channel mode (de)multiplexer with dual polarizations. Laser Photon. Rev., 2018, 12: 1700109.

[16] L. W. Luo, N. Ophir, C. Chen, L. Gabrielli, C. Poitras, K. Bergmen, M. Lipson. WDM-compatible mode-division multiplexing on a silicon chip. Nat. Commun., 2014, 5: 3069.

[17] J. Wang, S. Chen, D. Dai. Silicon hybrid demultiplexer with 64 channels for wavelength/mode-division multiplexed on-chip optical interconnects. Opt. Lett., 2014, 39: 6993.

[18] BaetsR.SubramanianA. Z.ClemmenS.KuykenB.BienstmanP.Le ThomasN.RoelkensG.Van ThourhoutD.HelinP.SeveriS., “Silicon photonics: silicon nitride versus silicon-on-insulator,” in Optical Fiber Communication Conference (2016).

[19] Y. Yang, Y. Li, Y. Huang, A. Poon. Silicon nitride three-mode division multiplexing and wavelength-division multiplexing using asymmetrical directional couplers and microring resonators. Opt. Express, 2014, 22: 22172.

[20] J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, K. Richardson. Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor. Opt. Express, 2007, 15: 2307.

[21] W. C. Tan, M. E. Solmaz, J. Gardner, R. Atkins, C. Madsen. Optical characterization of a-As2S3 thin films prepared by magnetron sputtering. J. Appl. Phys., 2010, 107: 033524.

[22] C. C. Huang, D. W. Hewak, J. V. Badding. Deposition and characterization of germanium sulphide glass planar waveguides. Opt. Express, 2004, 12: 2501.

[23] K. E. Youden, T. Grevatt, R. W. Eason, H. N. Rutt, R. S. Deol, G. Wylangowski. Pulsed laser deposition of Ga-La-S chalcogenide glass thin film optical waveguides. Appl. Phys. Lett., 1993, 63: 1601.

[24] B. Eggleton, B. L. Davies, K. Richardson. Chalcogenide photonics. Nat. Photon., 2011, 5: 141.

[25] W. Shen, P. Zeng, Z. Yang, D. Xia, J. Du, B. Zhang, K. Xu, Z. He, Z. Li. Chalcogenide glass photonic integration for improved 2 µm optical interconnection. Photon. Res., 2020, 8: 1484.

[26] R. V. Schmidt, I. P. Kaminow. Metal-diffused optical waveguides in LiNbO3. Appl. Phys. Lett., 1974, 25: 458.

[27] C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I.-C. Huang, P. Stark, M. Lončar. Integrated high quality factor lithium niobate microdisk resonators. Opt. Express, 2014, 22: 30924.

[28] I. Krasnokutska, J. Tambasco, X. Li, A. Peruzzo. Ultra-low loss photonic circuits in lithium niobate on insulator. Opt. Express, 2018, 26: 897.

[29] R. Wu, M. Wang, J. Xu, J. Qi, W. Chu, Z. Fang, J. Zhang, J. Zhou, L. Qiao, Z. Chai, J. Lin, Y. Cheng. Long low-loss-lithium niobate on insulator waveguides with sub-nanometer surface roughness. Nano Mater., 2018, 8: 910.

[30] W. Jin, K. Chiang. Mode switch based on electro-optic long-period waveguide grating in lithium niobate. Opt. Lett., 2015, 40: 237.

[31] J. Tol, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, H. Ambrosius, M. Smit. Photonic integration in indium-phosphide membranes on silicon (IMOS). Proc. SPIE, 2014, 8988: 89880M.

[32] Y. Jiao, J. Pello, A. Mejia, L. Shen, B. Smalbrugge, E. Geluk, M. Smit, J. Tol. Fullerene-assisted electron-beam lithography for pattern improvement and loss reduction in InP membrane waveguide devices. Opt. Lett., 2014, 39: 1645.

[33] TanemuraT.AmemiyaT.TakedaK.HigoA.NakanoY., “Simple and compact INP polarization converter for polarization-multiplexed photonic integrated circuits,” in IEEE LEOS Annual Meeting Conference (2009).

[34] F. Guo, D. Lu, R. Zhang, H. Wang, C. Ji. A two-mode (de)multiplexer based on multimode interferometer coupler and Y-junction on InP substrate. IEEE Photon. J., 2016, 8: 2700608.

[35] A. M. J. Koonen, H. Chen, H. P. A. van den Boom, O. Raz. Silicon photonic integrated mode multiplexer and demultiplexer. IEEE Photon. Technol. Lett., 2012, 24: 1961.

[36] Y. Tong, W. Zhou, X. Wu, H. K. Tsang. “Efficient mode multiplexer for few-mode fibers using integrated silicon-on-insulator waveguide grating coupler. EEE J. Quantum Electron., 2020, 56: 8400107.

[37] W. Shen, J. Du, J. Xiong, L. Ma, Z. He. Silicon-integrated dual-mode fiber-to-chip edge coupler for 2 × 100 Gbps/lambda MDM optical interconnection. Opt. Express, 2020, 28: 33254.

[38] Y. Lai, Y. Yu, S. Fu, J. Xu, P. P. Shum, X. Zhang. Compact double-part grating coupler for higher-order mode coupling. Opt. Lett., 2018, 43: 3172.

[39] I. Demirtzioglou, C. Lacava, A. Shakoor, A. Khokhar, Y. Jung, D. J. Thomson, P. Petropoulos. Apodized silicon photonic grating couplers for mode-order conversion. Photon. Res., 2019, 7: 1036.

[40] M. Zhang, H. Liu, B. Wang, G. Li, L. Zhang. Efficient grating couplers for space division multiplexing applications. IEEE J. Sel. Top. Quantum Electron., 2018, 24: 8200605.

[41] ChenH.SleifferV.SnyderB.KuschnerovM.van UdenR.JungY.OkonkwoC.RazO.O’BrienP.de WaardtH.KoonenT., “Demonstration of a photonic integrated mode coupler with 3.072 Tb/s MDM and WDM transmission over few-mode fiber,” in 18th OptoElectronics and Communications Conference & 2013 International Conference on Photonics in Switching (2013).

[42] DingY.YvindK., “Efficient silicon PIC mode multiplexer using grating coupler array with aluminum mirror for few-mode fiber,” in Conference on Lasers and Electro-Optics (CLEO) (2015).

[43] BaumannJ. M.da SilvaE. PortoDingY.DalgaardK.FrandsenL. H.OxenløweL. K.MoriokaT., “Silicon chip-to-chip mode-division multiplexing,” in Optical Fiber Communications Conference and Exposition (OFC) (2018).

[44] R. Ryf, N. K. Fontaine, R. Essiambre. Spot-based mode couplers for mode-multiplexed transmission in few-mode fiber. IEEE Photon. Technol. Lett., 2012, 24: 1973.

[45] Y. Lai, Y. Yu, S. Fu, J. Xu, P. P. Shum, X. Zhang. Efficient spot size converter for higher-order mode fiber-chip coupling. Opt. Lett., 2017, 42: 3702.

[46] Z. Li, Y. Lai, Y. Yu, X. Zhang. Reconfigurable fiber-chip mode converter with efficient multi-mode coupling function. IEEE Photon. Technol. Lett., 2020, 32: 371.

[47] D. Dai, M. Mao. Mode converter based on an inverse taper for multimode silicon nanophotonic integrated circuits. Opt. Express, 2015, 23: 28376.

[48] Y. Wu, K. S. Chiang. Ultra-broadband mode multiplexers based on three-dimensional asymmetric waveguide branches. Opt. Lett., 2017, 42: 407.

[49] X. Jiang, H. Wu, D. Dai. Low-loss and low-crosstalk multimode waveguide bend on silicon. Opt. Express, 2018, 26: 17680.

[50] Y. Wang, D. Dai. Ultra-sharp multimode waveguide bends with dual polarizations. J. Lightwave Technol., 2020, 38: 3994.

[51] XieH.LiuY.LiW.DuJ.YaoY.SongQ.XuK., “Demonstration of an ultra-compact bend for four modes based on pixelated meta-structure,” in Optical Fiber Communication Conference (OFC) (2020).

[52] WuX.ZhouW.HuangD.ZhangZ.WangY.BowersJ.TsangH. K., “Low crosstalk bent multimode waveguide for on-chip mode-division multiplexing interconnects,” in Conference on Lasers and Electro-Optics (2018).

[53] H. Xu, Y. Shi. Ultra-sharp multi-mode waveguide bending assisted with metamaterial-based mode converters. Laser Photon. Rev., 2018, 12: 1700240.

[54] C. Sun, Y. Yu, G. Chen, X. Zhang. Ultra-compact bent multimode silicon waveguide with ultralow inter-mode crosstalk. Opt. Lett., 2017, 42: 3004.

[55] XieH.LiuY.ChuZ.XuK.DuJ.SongQ., “Ultra-compact dual-mode waveguide bend based on an inverse design,” in The International Photonics and Optoelectronics Meeting (POEM) (2018).

[56] C. Sun, Y. Ding, Z. Li, W. Qi, Y. Yu, X. Zhang. Key multimode silicon photonic devices inspired by geometrical optics. ACS Photon., 2020, 7: 2037.

[57] H. Xu, Y. Shi. Dual-mode waveguide crossing utilizing taper-assisted multimode-interference couplers. Opt. Lett., 2016, 41: 5381.

[58] B. Wu, Y. Yu, X. Zhang. Multimode waveguide crossing with ultralow loss and low imbalance. Opt. Express, 2020, 28: 14705.

[59] C. Sun, Y. Yu, X. Zhang. Ultra-compact waveguide crossing for a mode-division multiplexing optical network. Opt. Lett., 2017, 42: 4913.

[60] W. Chang, L. Lu, X. Ren, L. Lu, M. Cheng, D. Liu, M. Zhang. An ultracompact multimode waveguide crossing based on subwavelength asymmetric Y-junction. IEEE Photon. J., 2018, 10: 4501008.

[61] W. Chang, L. Lu, X. Ren, D. Li, Z. Pan, M. Cheng, D. Liu, M. Zhang. Ultracompact dual-mode waveguide crossing based on subwavelength multimode-interference couplers. Photon. Res., 2018, 6: 660.

[62] H. Xu, Y. Shi. Metamaterial-based Maxwell’s fisheye lens for multimode waveguide crossing. Laser Photon. Rev., 2018, 12: 1800094.

[63] H. Xu, Y. Shi. Ultra-broadband dual-mode 3 dB power splitter based on a Y-junction assisted with mode converters. Opt. Lett., 2016, 41: 5047.

[64] Y. Luo, Y. Yu, M. Ye, C. Sun, X. Zhang. Integrated dual-mode 3 dB power coupler based on tapered directional coupler. Sci. Rep., 2016, 6: 23516.

[65] L. Han, B. P.-P. Kuo, N. Alic, S. Radic. Ultra-broadband multimode 3 dB optical power splitter using an adiabatic coupler and a Y-branch. Opt. Express, 2018, 26: 14800.

[66] W. Chang, X. Ren, Y. Ao, L. Lu, M. Cheng, L. Deng, D. Liu, M. Zhang. Inverse design and demonstration of an ultracompact broadband dual-mode 3 dB power splitter. Opt. Express, 2018, 26: 24135.

[67] H. Xie, Y. Liu, Y. Wang, Y. Wang, Y. Yao, Q. Song, J. Du, Z. He, K. Xu. An ultra-compact 3-dB power splitter for three modes based on pixelated meta-structure. IEEE Photon. Technol. Lett., 2020, 32: 341.

[68] Y. Li, C. Li, C. Li, B. Cheng, C. Xue. Compact two-mode (de)multiplexer based on symmetric Y-junction and multimode interference waveguides. Opt. Express, 2014, 22: 5781.

[69] WangZ.YaoC.ZhangY.SuY., “Ultra-compact and broadband silicon two-mode multiplexer based on asymmetric shallow etching on a multi-mode interferometer,” in Optical Fiber Communications Conference and Exhibition (OFC) (2020).

[70] Y. Ding, J. Xu, F. Da Ros, B. Huang, H. Ou, C. Peucheret. On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer. Opt. Express, 2013, 21: 10376.

[71] DaveU. D.LipsonM., “Efficient conversion to very high order modes in silicon waveguides,” in Conference on Lasers and Electro-Optics (2019).

[72] Y. Sun, Y. Xiong, W. N. Ye. Experimental demonstration of a two-mode (de)multiplexer based on a taper-etched directional coupler. Opt. Lett., 2016, 41: 3743.

[73] J. B. Driscoll, R. R. Grote, B. Souhan, J. I. Dadap, M. Lu, R. M. Osgood. Asymmetric Y junctions in silicon waveguides for on-chip mode-division multiplexing. Opt. Lett., 2013, 38: 1854.

[74] W. Chen, P. Wang, T. Yang, G. Wang, T. Dai, Y. Zhang, L. Zhou, X. Jiang, J. Yang. Silicon three-mode (de)multiplexer based on cascaded asymmetric Y junctions. Opt. Lett., 2016, 41: 2851.

[75] C. Sun, Y. Yu, M. Ye, G. Chen, X. Zhang. An ultra-low crosstalk and broadband two-mode (de)multiplexer based on adiabatic couplers. Sci. Rep., 2016, 6: 38494.

[76] Z. Zhang, Y. Yu, S. Fu. Broadband on-chip mode-division multiplexer based on adiabatic couplers and symmetric Y-junction. IEEE Photon. J., 2017, 9: 6600406.

[77] L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, M. Lipson. WDM-compatible mode-division multiplexing on a silicon chip. Nat. Commun., 2014, 5: 3069.

[78] M. Ye, Y. Yu, G. Chen, Y. Luo, X. Zhang. On-chip WDM mode-division multiplexing interconnection with optional demodulation function. Opt. Express, 2015, 23: 32130.

[79] H. Jia, X. Fu, T. Zhou, L. Zhang, S. Yang, L. Yang. Mode-selective modulation by silicon microring resonators and mode multiplexers for on-chip optical interconnect. Opt. Express, 2019, 27: 2915.

[80] H. Xiao, Z. Zhang, J. Yang, X. Han, W. Chen, G. Ren, A. Mitchell, J. Yang, D. Gao, Y. Tian. On-chip scalable mode-selective converter based on asymmetrical micro-racetrack resonators. Nanophotonics, 2020, 9: 1447.

[81] H. Qiu, H. Yu, T. Hu, G. Jiang, H. Shao, P. Yu, J. Yang, X. Jiang. Silicon mode multi/demultiplexer based on multimode grating-assisted couplers. Opt. Express, 2013, 21: 17904.

[82] C. Gui, Y. Gao, Z. Zhang, J. Wang. On-chip silicon two-mode (de)multiplexer for OFDM/OQAM data transmission based on grating-assisted coupler. IEEE Photon. J., 2015, 7: 7905807.

[83] Y. He, Y. Zhang, H. Wang, L. Sun, Y. Su. Design and experimental demonstration of a silicon multi-dimensional (de)multiplexer for wavelength-, mode- and polarization-division (de)multiplexing. Opt. Lett., 2020, 45: 2846.

[84] L. F. Frellsen, Y. Ding, O. Sigmund, L. H. Frandsen. Topology optimized mode multiplexing in silicon-on-insulator photonic wire waveguides. Opt. Express, 2016, 24: 16866.

[85] W. Chang, L. Lu, X. Ren, D. Li, Z. Pan, M. Cheng, D. Liu, M. Zhang. Ultra-compact mode (de)multiplexer based on subwavelength asymmetric Y-junction. Opt. Express, 2018, 26: 8162.

[86] H. Xie, Y. Liu, S. Wang, Y. Wang, Y. Yao, Q. song, J. Du, Z. He, K. Xu. Highly compact and efficient four-mode multiplexer based on pixelated waveguides. IEEE Photon. Technol. Lett., 2020, 32: 166.

[87] H. Xiao, Z. Liu, X. Han, J. Yang, G. Ren, A. Mitchell, Y. Tian. On-chip reconfigurable and scalable optical mode multiplexer/demultiplexer based on three-waveguide-coupling structure. Opt. Express, 2018, 26: 22366.

[88] W. Jiang, F. Cheng, J. Xu, H. Wan. Compact and low-crosstalk mode (de)multiplexer using a triple plasmonic-dielectric waveguide-based directional coupler. J. Opt. Soc. Am. B, 2018, 35: 2532.

[89] W. Jiang. Nonvolatile and ultra-low-loss reconfigurable mode (de)multiplexer/switch using triple-waveguide coupler with Ge2Sb2Se4Te1 phase change material. Sci. Rep., 2018, 8: 15946.

[90] N. Riesen, J. D. Love. Design of mode-sorting asymmetric Y-junctions. Appl. Opt., 2012, 51: 2778.

[91] Y. Liu, K. Xu, S. Wang, W. Shen, H. Xie, Y. Wang, S. Xiao, Y. Yao, J. Du, Z. He, Q. Song. Arbitrarily routed mode-division multiplexed photonic circuits for dense integration. Nat. Commun., 2019, 10: 3263.

[92] D. Chen, X. Xiao, L. Wang, Y. Yu, W. Liu, Q. Yang. Low-loss and fabrication tolerant silicon mode-order converters based on novel compact tapers. Opt. Express, 2015, 23: 11152.

[93] ZhaoY.GuoX.WangK.WangH.SuY., “Ultra-compact silicon TE-polarized mode converters combining a directional coupler and a phase shifter,” in Asia Communications and Photonics Conference (ACPC) (2019).

[94] XiangJ.TaoZ.GuoX.ZhangY.ZhaoY.SuY., “Universal programmable on-chip metasurface building blocks for arbitrary high-order mode manipulation,” arXiv: 2006.08552 (2020).

[95] T. Wang, H. Guo, H. Chen, J. Yang, H. Jia. Ultra-compact reflective mode converter based on a silicon subwavelength structure. Appl. Opt., 2020, 59: 2754.

[96] H. Jia, H. Chen, T. Wang, H. Xiao, G. Ren, A. Mitchell, J. Yang, Y. Tian. Multi-channel parallel silicon mode-order converter for multimode on-chip optical switching. IEEE J. Sel. Top. Quantum Electron., 2020, 26: 8302106.

[97] H. Jia, T. Zhou, X. Fu, J. Ding, L. Yang. Inverse-design and demonstration of ultracompact silicon meta-structure mode exchange device. ACS Photon., 2018, 5: 1833.

[98] X. Han, H. Xiao, Z. Liu, T. Zhao, H. Jia, J. Yang, B. J. Eggleton, Y. Tian. Reconfigurable on-chip mode exchange for mode-division multiplexing optical networks. J. Lightwave Technol., 2019, 37: 1008.

[99] J. Guo, C. Ye, C. Liu, M. Zhang, C. Li, J. Li, D. Dai. Ultra-compact and ultra-broadband guided-mode exchangers on silicon. Laser Photon. Rev., 2020, 14: 2000058.

[100] X. Guan, Y. Ding, L. H. Frandsen. Ultra-compact broadband higher order-mode pass filter fabricated in a silicon waveguide for multimode photonics. Opt. Lett., 2015, 40: 3893.

[101] C. Sun, W. Wu, Y. Yu, X. Zhang, G. T. Reed. Integrated tunable mode filter for a mode-division multiplexing system. Opt. Lett., 2018, 43: 3658.

[102] D. Dai. Silicon polarization beam splitter based on an asymmetrical evanescent coupling system with three optical waveguides. J. Lightwave Technol., 2012, 30: 3281.

[103] H. Qiu, J. Jiang, P. Yu, J. Yang, H. Yu, X. Jiang. Broad bandwidth and large fabrication tolerance polarization beam splitter based on multimode anti-symmetric Bragg sidewall gratings. Opt. Lett., 2017, 42: 3912.

[104] H. Qiu, J. Jiang, P. Yu, T. Dai, J. Yang, H. Yu, X. Jiang. Silicon band-rejection and band-pass filter based on asymmetric Bragg sidewall gratings in a multimode waveguide. Opt. Lett., 2016, 41: 2450.

[105] J. Jiang, H. Qiu, G. Wang, Y. Li, T. Dai, D. Mu, H. Yu, J. Yang, X. Jiang. Silicon lateral-apodized add–drop filter for on-chip optical interconnection. Appl. Opt., 2017, 56: 8425.

[106] H. Qiu, J. Jiang, T. Hu, P. Yu, J. Yang, X. Jiang, H. Yu. Silicon add-drop filter based on multimode Bragg sidewall gratings and adiabatic couplers. J. Lightwave Technol., 2017, 35: 1705.

[107] J. Jiang, H. Qiu, G. Wang, Y. Li, T. Dai, X. Wang, H. Yu, J. Yang, X. Jiang. Broadband tunable filter based on the loop of multimode Bragg grating. Opt. Express, 2018, 26: 559.

[108] H. Xu, Y. Shi. Ultra-compact and highly efficient polarization rotator utilizing multi-mode waveguides. Opt. Lett., 2017, 42: 771.

[109] H. Xu, Y. Shi. Ultra-broadband silicon polarization splitter-rotator based on the multi-mode waveguide. Opt. Express, 2017, 25: 18485.

[110] C. Sun, Y. Yu, Y. Ding, Z. Li, W. Qi, X. Zhang. Integrated mode-transparent polarization beam splitter supporting thirteen data channels. Photon. Res., 2020, 8: 978.

[111] ZhouG.ZhouL.GuoY.ChenS.FuZ.LuL.ChenJ., “High-speed silicon electro-optic modulator based on a single multimode waveguide,” in Optical Fiber Communication Conference (2019).

[112] S. Miller, Y. Chang, C. Phare, M. Shin, M. Zadka, S. Roberts, B. Stern, X. Ji, A. Mohanty, O. Jimenez Gordillo, U. Dave, M. Lipson. Large-scale optical phased array using a low-power multi-pass silicon photonic platform. Optica, 2020, 7: 3.

[113] M. Ye, Y. Yu, C. Sun, X. Zhang. On-chip data exchange for mode division multiplexed signals. Opt. Express, 2016, 24: 528.

[114] C. Sun, Y. Yu, G. Chen, X. Zhang. Integrated switchable mode exchange for reconfigurable mode-multiplexing optical networks. Opt. Lett., 2016, 41: 3257.

[115] C. Sun, Y. Yu, G. Chen, X. Zhang. On-chip switch for reconfigurable mode-multiplexing optical network. Opt. Express, 2016, 24: 21722.

[116] Y. Xiong, R. B. Priti, O. Liboiron-Ladouceur. High-speed two-mode switch for mode-division multiplexing optical networks. Optica, 2017, 4: 1098.

[117] H. Jia, S. Yang, T. Zhou, L. Zhang, T. Wang, H. Chen, J. Yang, L. Yang. Mode-oriented permutation cipher encryption and passive signal switching based on multiobjective optimized silicon subwavelength metastructures. ACS Photon., 2020, 7: 2163.

[118] L. Lu, D. Liu, M. Yan, M. Zhang. Subwavelength adiabatic multimode Y-junctions. Opt. Lett., 2019, 44: 4729.

[119] S. A. Miller, Y.-C. Chang, C. T. Phare, M. C. Shin, M. Zadka, S. P. Roberts, B. Stern, X. Ji, A. Mohanty, O. A. J. Gordillo, U. D. Dave, M. Lipson. Large-scale optical phased array using a low-power multi-pass silicon photonic platform. Optica, 2020, 7: 3.

[120] D. Dai, J. E. Bowers. Silicon-based on-chip multiplexing technologies and devices for peta-bit optical interconnects. Nanophotonics, 2014, 3: 283.

[121] H. Jia, S. Yang, T. Zhou, S. Shao, X. Fu, L. Zhang, L. Yang. WDM-compatible multimode optical switching system-on-chip. Nanophotonics, 2019, 8: 889.

[122] B. Stern, X. Zhu, C. P. Chen, L. D. Tzuang, J. Cardenas, K. Bergman, M. Lipson. On-chip mode-division multiplexing switch. Optica, 2015, 2: 530.

[123] H. Jia, T. Zhou, L. Zhang, J. Ding, X. Fu, L. Yang. Optical switch compatible with wavelength division multiplexing and mode division multiplexing for photonic networks-on-chip. Opt. Express, 2017, 25: 20698.

[124] ZhangY.ZhuQ.HeY.QiuC.SuY.SorefR., “Silicon 1 × 2 mode- and polarization-selective switch,” in Optical Fiber Communication Conference (2017).

[125] L. Yang, T. Zhou, H. Jia, S. Yang, J. Ding, X. Fu, L. Zhang. General architectures for on-chip optical space and mode switching. Optica, 2018, 5: 180.

[126] C. Sun, W. Wu, Y. Yu, G. Chen, X. Zhang, X. Chen, D. J. Thomson, G. T. Reed. De-multiplexing free on-chip low-loss multimode switch enabling reconfigurable inter-mode and inter-path routing. Nanophotonics, 2018, 7: 1571.

[127] D. Zhou, C. Sun, Y. Lai, Y. Yu, X. Zhang. Integrated silicon multifunctional mode-division multiplexing system. Opt. Express, 2019, 27: 10798.

[128] S. Wang, H. Wu, H. K. Tsang, D. Dai. Monolithically integrated reconfigurable add-drop multiplexer for mode-division-multiplexing systems. Opt. Lett., 2016, 41: 5298.

[129] S. Wang, X. Feng, S. Gao, Y. Shi, T. Dai, H. Yu, H.-K. Tsang, D. Dai. On-chip reconfigurable optical add-drop multiplexer for hybrid wavelength/mode-division-multiplexing systems. Opt. Lett., 2017, 42: 2802.

[130] HanL.KuoB. P.AlicN.RadicS., “Silicon photonic wavelength and mode selective switch for WDM-MDM networks,” in Optical Fiber Communications Conference and Exhibition (OFC) (2019).

[131] MaruyamaR.KuwakiN.MatsuoS.OhashiM., “Experimental investigation of relation between mode-coupling and fiber characteristics in few-mode fibers,” in Optical Fiber Communication Conference (2015).

[132] SillardP.Bigot-AstrucM.BoivinD.MaertenH.ProvostL., “Few-mode fiber for uncoupled mode-division multiplexing transmissions,” in 37th European Conference and Exposition on Optical Communications (2011).

[133] Bigot-AstrucM.BoivinD.SillardP., “Design and fabrication of weakly-coupled few-modes fibers,” in IEEE Photonics Society Summer Topical Meeting Series (2012).

[134] BigotM.MolinD.de JonghK.Van RasD.AchtenF.SillardP., “Next-generation multimode fibers for space division multiplexing,” in Advanced Photonics (2017).

[135] S. Jiang, L. Ma, Z. Zhang, X. Xu, S. Wang, J. Du, C. Yang, W. Tong, Z. He. Design and characterization of ring-assisted few-mode fibers for weakly coupled mode-division multiplexing transmission. J. Lightwave Technol., 2018, 36: 5547.

[136] MaL.JiangS.DuJ.YangC.TongW.HeZ., “Ring-assisted 7-LP-mode fiber with ultra-low inter-mode crosstalk,” in Asia Communications and Photonics Conference (2016).

[137] K. Sato, R. Maruyama, N. Kuwaki, S. Matsuo, M. Ohashi. Optimized graded index two-mode optical fiber with low DMD, large Aeff and low bending loss. Opt. Express, 2013, 21: 16231.

[138] P. Sillard, D. Molin, M. Bigot-Astruc, K. De Jongh, F. Achten, A. M. Velázquez-Benítez, R. Amezcua-Correa, C. M. Okonkwo. Low-differential-mode-group-delay 9-LP-mode fiber. J. Lightwave Technol., 2016, 34: 425.

[139] Y. Kim, H. E. Engan, H. J. Shaw, J. N. Blake. Fiber-optic modal coupler using periodic microbending. Opt. Lett., 1986, 11: 389.

[140] J. N. Blake, B. Y. Kim, H. J. Shaw. Highly selective evanescent modal filter for two-mode optical fibers. Opt. Lett., 1986, 11: 177.

[141] J. Liang, Q. Mo, S. Fu, M. Tang, P. Shum, D. Liu. Design and fabrication of elliptical-core few-mode fiber for MIMO-less data transmission. Opt. Lett., 2016, 41: 3058.

[142] L. Wang, S. LaRochelle. Design of eight-mode polarization-maintaining few-mode fiber for multiple-input multiple-output-free spatial division multiplexing. Opt. Lett., 2015, 40: 5846.

[143] C. Xia, N. Bai, I. Ozdur, X. Zhou, G. Li. Supermodes for optical transmission. Opt. Express, 2011, 19: 16653.

[144] H. Xiao, H. Li, G. Ren, Y. Dong, S. Xiao, J. Liu, B. Wei, S. Jian. Polarization-maintaining supermode fiber supporting 20 modes. IEEE Photon. Technol. Lett., 2017, 29: 1340.

[145] HeZ.DuJ.ShenW.HuangY.WangC.XuK.HeZ., “Inverse design of few-mode fiber by neural network for weak-coupling optimization,” in Optical Fiber Communication Conference (2020).

[146] StepniakG.MaksymiukL.SiuzdakJ., “Increasing multimode fiber transmission capacity by mode selective spatial light phase modulation,” in 36th European Conference and Exhibition on Optical Communication (2010).

[147] ZhuL.WeiX.WangJ.ZhangZ.LiZ.ZhangH.LiS.WangK.LiuJ., “Experimental demonstration of basic functionalities for 0.1-THz orbital angular momentum (OAM) communications,” in Optical Fiber Communication Conference (2014).

[148] LiJ., “A study on key technologies for mode division multiplexed optical transmission systems,” Ph.D. Thesis (Shanghai Jiao Tong University,2019).

[149] K. Y. Song, I. K. Hwang, S. H. Yun, B. Y. Kim. High performance fused-type mode-selective coupler using elliptical core two-mode fiber at 1550 nm. IEEE Photon. Technol. Lett., 2002, 14: 501.

[150] S. Savin, M. J. F. Digonnet, G. S. Kino, H. J. Shaw. Tunable mechanically induced long-period fiber gratings. Opt. Lett., 2000, 25: 710.

[151] S. G. Leon-Saval, N. K. Fontaine, R. Amezcua-Correa. Photonic lantern as mode multiplexer for multimode optical communications. Opt. Fiber Tech., 2017, 35: 46.

[152] N. K. Fontaine, R. Ryf, J. Bland-Hawthorn, S. G. Leon-Saval. Geometric requirements for photonic lanterns in space division multiplexing. Opt. Express, 2012, 20: 27123.

[153] Y. Jung, S. Alam, Z. Li, A. Dhar, D. Giles, I. P. Giles, J. K. Sahu, F. Poletti, L. Grüner-Nielsen, D. J. Richardson. First demonstration and detailed characterization of a multimode amplifier for space division multiplexed transmission systems. Opt. Express, 2011, 19: B952.

[154] G. L. Cocq, L. Bigot, A. L. Rouge, M. Bigot-Astruc, P. Sillard, C. Koebele, M. Salsi, Y. Quiquempois. Modeling and characterization of a few-mode EDFA supporting four mode groups for mode division multiplexing. Opt. Express, 2012, 20: 27051.

[155] KangQ.LimE.JungY.PolettiF.AlamS.RichardsonD. J., “Design of four-mode erbium doped fiber amplifier with low differential modal gain for modal division multiplexed transmissions,” in Optical Fiber Communication Conference (2013).

[156] WakayamaY.IgarashiK.SomaD.TagaH.TsuritaniT., “Novel 6-mode fibre amplifier with large erbium-doped area for differential modal gain minimization,” in 42nd European Conference on Optical Communication (2016).

[157] A. Gaur, G. Kumar, V. Rastogi. Dual-core few mode EDFA for amplification of 20 modes. Opt. Quantum Electron., 2018, 50: 66.

[158] BigotL.TrinelJ.BouwmansG.AndresenE. R.QuiquempoisY., “Few-mode and multicore fiber amplifiers technology for SDM,” in Optical Fiber Communication Conference (2018).

[159] G. Khanna, T. Rahman, E. D. Man, E. Riccardi, A. Pagano, A. C. Piat, S. Calabrò, B. Spinnler, D. Rafique, U. Feiste. Single-carrier 400G 64QAM and 128QAM DWDM field trial transmission over metro legacy links. IEEE Photon. Tech. Lett., 2017, 29: 189.

[160] S. Namiki, Y. Emori. Ultrabroad-band Raman amplifiers pumped and gain-equalized by wavelength-division-multiplexed high-power laser diodes. IEEE J. Sel. Top. Quantum. Electron., 2001, 7: 3.

[161] RyfR.SierraA.EssiambreR.-J.RandelS.GnauckA. H.BolleC.EsmaeelpourM.WinzerP. J.DelbueR.PupalaikiseP.SurekaA.PeckhamD. W.McCurdyA.LingleR., “Mode-equalized distributed Raman amplification in 137-km few-mode fiber,” in European Conference and Exhibition on Optical Communication (2011).

[162] M. Esmaeelpour, R. Ryf, N. K. Fontaine, H. Chen, A. H. Gnauck, R. Essiambre, J. Toulouse, Y. Sun, R. Lingle. Transmission over 1050-km few-mode fiber based on bidirectional distributed Raman amplification. J. Lightwave Technol., 2016, 34: 1864.

[163] J. Li, L. Wang, J. Du, S. Jiang, L. Ma, C. Cai, L. Zhu, A. Wang, M.-J. Li, H. Chen, J. Wang, Z. He. Experimental demonstration of a few-mode Raman amplifier with a flat gain covering 1530–1605 nm. Opt. Lett., 2018, 43: 4530.

[164] J. Li, J. Du, L. Ma, M.-J. Li, K. Xu, Z. He. Second-order few-mode Raman amplifier for mode-division multiplexed optical communication systems. Opt. Express, 2017, 25: 810.

[165] J. Li, C. Cai, J. Du, S. Jiang, Z. He. Ultra-low-noise mode-division multiplexed WDM transmission over 100-km FMF based on a second-order few-mode Raman amplifier. J. Lightwave Technol., 2018, 36: 3254.

[166] J. D. Ania-Castañón. Quasi-lossless transmission using second-order Raman amplification and fibre Bragg gratings. Opt. Express, 2004, 12: 4372.

[167] M. Tan, P. Rosa, S. T. Le, V. V. Dvoyrin, M. A. Iqbal, S. Sugavanam, S. K. Turitsyn, P. Harper. RIN mitigation and transmission performance enhancement with forward broad band pump. IEEE Photon. Technol. Lett., 2018, 30: 254.

[168] ChenY.DuJ.LiJ.ShenL.LuoJ.HeZ., “Time-wavelength-mode equalization by PSO for random fiber laser based FMF Raman amplifier,” in Optical Fiber Communication Conference (2020).

[169] ChenY.DuJ.HuangY.XuK.HeZ., “Intelligent gain flattening of FMF Raman amplification by machine learning based inverse design,” in Optical Fiber Communication Conference (2020).

[170] Y. Chen, J. Du, Y. Huang, K. Xu, Z. He. Intelligent gain flattening in wavelength and space domain for FMF Raman amplification by machine learning based inverse design. Opt. Express, 2020, 28: 11911.

[171] S. Berdagué, P. Facq. Mode division multiplexing in optical fibers. Appl. Opt., 1982, 21: 1950.

[172] IpE.BaiN.HuangY. K.MateoE.YamanF.LiM. J.BickhamS.TenS.LiñaresJ.MonteroC.MorenoV.PrietoX.TseV.ChungK. M.LauA.TamH. Y.LuC.LuoY.PengG. D.LiG., “88 × 3 × 112-Gb/s WDM transmission over 50 km of three-mode fiber with inline few mode fiber amplifier,” in 37th European Conference and Exposition on Optical Communications (2011).

[173] R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R. Essiambre, P. J. Winzer, D. W. Peckham, A. H. McCurdy, R. Lingle. Mode-division multiplexing over 96 km of few-mode fiber using coherent 6 ×6 MIMO processing. J. Lightwave Technol., 2012, 30: 521.

[174] RandelS.RyfR.GnauckA. H.MestreM. A.SchmidtC.EssiambreR.-J.WinzerP. J.DelbueR.PupalaikisP.SurekaA.SunY.JiangX.LingleR., “Mode-multiplexed 6×20-GBd QPSK transmission over 1200-km DGD-compensated few-mode fiber,” in National Fiber Optic Engineers Conference (2012).

    G. Rademacher, S. Randel, R. Ryf, R. Ryf, N. K. Fontaine, A. H. Gnauck, H. Chen, M. A. Mestre, C. Schmidt, R. J. Essiambre, R.-J. Essiambre, B. J. Puttnam, P. J. Winzer, R. S. Luís, Y. Awaji, R. Delbue, P. Pupalaikis, N. Wada, A. Sureka, S. Gross, Y. Sun, N. Riesen, M. Withford, X. Jiang, R. Lingle, Y. Sun, R. Lingle. Long-haul transmission over few-mode fibers with space-division multiplexing. J. Lightwave Technol., 2018, 36: 1382.

[175] SomaD.IgarashiK.WakayamaY.TakeshimaK.KawaguchiY.YoshikaneN.TsuritaniT.MoritaI.SuzukiM., “2.05 peta-bit/s super-Nyquist-WDM SDM transmission using 9.8-km 6-mode 19-core fiber in full C band,” in European Conference on Optical Communication (2015).

[176] RyfR.ChenH.FontaineN. K.Velazquez-BenitezA. M.Antonio-LopezJ.AlvaradoJ. C.EznavehZ. SanjabiJinC.HuangB.ChangS. H.ErcanB.GonnetC.Bigot-AstrucM.MolinD.AchtenF.SillardP.Amezcua-CorreaR., “10-mode mode-multiplexed transmission with inline amplification,” in 42nd European Conference on Optical Communication (2016).

[177] SomaD.WakayamaY.BeppuS.SumitaS.TsuritaniT.HayashiT.NagashimaT.SuzukiM.TakahashiH.IgarashiK.MoritaI.SuzukiM., “10.16 peta-bit/s dense SDM/WDM transmission over low-DMD 6-mode 19-core fibre across C+L band,” in European Conference on Optical Communication (ECOC) (2017).

[179] G. Rademacher, R. S. Luís, B. J. Puttnam, T. A. Eriksson, R. Ryf, E. Agrell, R. Maruyama, K. Aikawa, Y. Awaji, H. Furukawa, N. Wada. High-capacity transmission with few-mode fibers. J. Lightwave Technol., 2019, 37: 425.

[180] K. Shibahara, T. Mizuno, D. Lee, Y. Miyamoto, H. Ono, K. Nakajima, Y. Amma, K. Takenaga, K. Saitoh. DMD-unmanaged long-haul SDM transmission over 2500-km 12-core × 3-mode MC-FMF and 6300-km 3-mode FMF employing intermodal interference canceling technique. J. Lightwave Technol., 2019, 37: 138.

[181] ShibaharaK.MizunoT.OnoH.NakajimaK.MiyamotoY., “Long-haul DMD-unmanaged 6-mode-multiplexed transmission employing cyclic mode-group permutation,” in Optical Fiber Communication Conference (2020).

Jiangbing Du, Weihong Shen, Jiacheng Liu, Yufeng Chen, Xinyi Chen, Zuyuan He. Mode division multiplexing: from photonic integration to optical fiber transmission [Invited][J]. Chinese Optics Letters, 2021, 19(9): 091301.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!