光学学报, 2019, 39 (1): 0124001, 网络出版: 2019-05-10   

涂覆石墨烯的三根电介质纳米线波导的模式特性 下载: 1055次

Mode Characteristics of Waveguides Based on Three Graphene-Coated Dielectric Nanowires
作者单位
1 山西大学物理电子工程学院, 山西 太原 030006
2 山西大学量子光学与光量子器件国家重点实验室,激光光谱研究所, 山西 太原 030006
3 山西大学极端光学协同创新中心, 山西 太原 030006
引用该论文

卫壮志, 薛文瑞, 彭艳玲, 程鑫, 李昌勇. 涂覆石墨烯的三根电介质纳米线波导的模式特性[J]. 光学学报, 2019, 39(1): 0124001.

Zhuangzhi Wei, Wenrui Xue, Yanling Peng, Xin Cheng, Changyong Li. Mode Characteristics of Waveguides Based on Three Graphene-Coated Dielectric Nanowires[J]. Acta Optica Sinica, 2019, 39(1): 0124001.

参考文献

[1] Liao L, Lin Y C, Bao M Q, et al. High-speed graphene transistors with a self-aligned nanowire gate[J]. Nature, 2010, 467(7313): 305-308.

[2] Lin Y M, Dimitrakopoulos C, Jenkins K A. et al. 100-GHz transistors from wafer-scale epitaxial graphene[J]. Science, 2010, 327(5966): 662.

[3] Bonaccorso F, Sun Z, Hasan T. et al. Graphene photonics and optoelectronics[J]. Nature Photonics, 2010, 4(9): 611-622.

[4] Loh K P, Bao Q L, Eda G. et al. Graphene oxide as a chemically tunable platform for optical applications[J]. Nature Chemistry, 2010, 2(12): 1015-1024.

[5] Novoselov K S, Geim A K, Morozov S V. et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 2005, 438(7065): 197-200.

[6] Wang F, Zhang Y B, Tian C S, et al. Gate-variable optical transitions in graphene[J]. Science, 2008, 320(5873): 206-209.

[7] Ju L, Geng B S, Horng J. et al. Graphene plasmonics for tunable terahertz metamaterials[J]. Nature Nanotechnology, 2011, 6(10): 630-634.

[8] 田正浩, 司长峰, 屈文山, 等. 基于溶液加工氧化石墨烯的高性能有机太阳能电池[J]. 光学学报, 2017, 37(4): 0416001.

    Tian Z H, Si C F, Qu W S, et al. High-performance organic photovoltaics using solution-processed graphene oxide[J]. Acta Optica Sinica, 2017, 37(4): 0416001.

[9] 耿莉, 谢亚楠, 原媛. 基于石墨烯的太赫兹方向图可重构天线[J]. 激光与光电子学进展, 2017, 54(3): 031602.

    Geng L, Xie Y N, Yuan Y. Graphene-based antenna with reconfigurable radiation pattern in teraherz[J]. Laser and Optoelectrinics Progress, 2017, 54(3): 031602.

[10] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 2003, 424(6950): 824-830.

[11] Xu W, Zhu Z H, Liu K. et al. Dielectric loaded graphene plasmon waveguide[J]. Optics Express, 2015, 23(4): 5147-5153.

[12] Lao J E, Tao J, Wang Q J. et al. Tunable graphene-based plasmonic waveguides: nano modulators and nano attenuators[J]. Laser & Photonics Reviews, 2014, 8(4): 569-574.

[13] Dai Y Y, Zhu X L, Mortensen N A, et al. Nanofocusing in a tapered graphene plasmonic waveguide[J]. Journal of Optics, 2015, 17(6): 065002.

[14] Liu P H, Zhang X Z, Ma Z H. et al. Surface plasmon modes in graphene wedge and groove waveguides[J]. Optics Express, 2013, 21(26): 32432-32440.

[15] He S L, Zhang X Z, He Y R. Graphene nano-ribbon waveguides of record-small mode area and ultra-high effective refractive indices for future VLSI[J]. Optics Express, 2013, 21(25): 30664-30673.

[16] Yan H G, Low T, Zhu W J, et al. Damping pathways of mid-infrared plasmons in graphene nanostructures[J]. Nature Photonics, 2013, 7(5): 394-399.

[17] Gao Y X, Ren G B, Zhu B F. et al. Single-mode graphene-coated nanowire plasmonic waveguide[J]. Optics Letters, 2014, 39(20): 5909-5912.

[18] Yang J F, Yang J J, Deng W. et al. Transmission properties and molecular sensing application of CGPW[J]. Optics Express, 2015, 23(25): 32289-32299.

[19] Xing R, Jian S S. Numerical analysis on tunable multilayer nanoring waveguide[J]. IEEE Photonics Technology Letters, 2017, 29(12): 967-970.

[20] Zhu B F, Ren G B, Yang Y. et al. Field enhancement and gradient force in the graphene-coated nanowire pairs[J]. Plasmonics, 2015, 10(4): 839-845.

[21] Xing R, Jian S S. Numerical analysis on the multilayer nanoring waveguide pair[J]. IEEE Photonics Technology Letters, 2016, 28(24): 2779-2782.

[22] 卫壮志, 薛文瑞, 彭艳玲, 等. 基于涂覆石墨烯的三根电介质纳米线的THz波导的模式特性分析[J]. 物理学报, 2018, 67(10): 108101.

    Wei Z Z, Xue W R, Peng Y L, et al. Modes characteristics analysis of THz waveguides based on three graphene-coated dielectric nanowires[J]. Acta Physica Sinica, 2018, 67(10): 108101.

[23] Luo L W, Ophir N, Chen C P. et al. WDM-compatible mode-division multiplexing on a silicon chip[J]. Nature Communications, 2014, 5: 3069.

[24] Yang H B, Qiu M, Li Q. Identification and control of multiple leaky plasmon modes in silver nanowires[J]. Laser & Photonics Reviews, 2016, 10(2): 278-286.

[25] Wu X R, Huang C R, Xu K, et al. Mode-division multiplexing for silicon photonic network-on-chip[J]. Journal of Lightwave Technology, 2017, 35(15): 3223-3228.

[26] Bao Q L, Loh K P. Graphene photonics, plasmonics, and broadband optoelectronic devices[J]. ACS Nano, 2012, 6(5): 3677-3694.

[27] Nikitin A Y, Guinea F. García-Vidal F J, et al. Fields radiated by a nanoemitter in a graphene sheet[J]. Physical Review B, 2011, 84(19): 195446.

[28] Wijngaard W. Guided normal modes of two parallel circular dielectric rods[J]. Journal of the Optical Society of America, 1973, 63(8): 944-950.

[29] Wijngaard W. Some normal modes of an infinite hexagonal array of identical circular dielectric rods[J]. Journal of the Optical Society of America, 1974, 64(8): 1136-1144.

[30] Huang H S, Chang H C. Analysis of equilateral three-core fibers by circular harmonics expansion method[J]. Journal of Lightwave Technology, 1990, 8(6): 945-952.

[31] Lo K M. McPhedran R C, Bassett I M, et al. An electromagnetic theory of dielectric waveguides with multiple embedded cylinders[J]. Journal of Lightwave Technology, 1994, 12(3): 396-410.

[32] White T P, Kuhlmey B T. McPhedran R C, et al. Multipole method for microstructured optical fibers I Formulation[J]. Journal of the Optical Society of America B, 2002, 19(10): 2322-2330.

[33] Kuhlmey B T, White T P, Renversez G. et al. Multipole method for microstructured optical fibers II Implementation and results[J]. Journal of the Optical Society of America B, 2002, 19(10): 2331-2340.

卫壮志, 薛文瑞, 彭艳玲, 程鑫, 李昌勇. 涂覆石墨烯的三根电介质纳米线波导的模式特性[J]. 光学学报, 2019, 39(1): 0124001. Zhuangzhi Wei, Wenrui Xue, Yanling Peng, Xin Cheng, Changyong Li. Mode Characteristics of Waveguides Based on Three Graphene-Coated Dielectric Nanowires[J]. Acta Optica Sinica, 2019, 39(1): 0124001.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!